|本期目录/Table of Contents|

[1]陈国涛,万超超,安雪姣,等.嗜热复合菌群对偶氮染料的脱色特性及其脱毒[J].应用与环境生物学报,2020,26(04):800-808.
 CHEN Guotao,WAN Chaochao,An Xuejiao,et al.Decolorization and detoxification of the azo dyes by thermophilic microflora[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):800-808.
点击复制

嗜热复合菌群对偶氮染料的脱色特性及其脱毒()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
800-808
栏目:
工业与环境微生物功能研究专栏
出版日期:
2020-08-25

文章信息/Info

Title:
Decolorization and detoxification of the azo dyes by thermophilic microflora
作者:
陈国涛万超超安雪姣冯琳琳夏 祥张庆华
江西农业大学生物科学与工程学院,江西省农业微生物资源开发与利用工程实验室 南昌 330045
Author(s):
CHEN Guotao WAN Chaochao An Xuejiao FENG Linlin XIA Xiang & ZHANG Qinghua?
Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, China
关键词:
嗜热复合菌群偶氮染料脱色特性脱毒效果
Keywords:
thermophilic microflora azo dyes decolorization characteristics detoxification effect
摘要:
偶氮染料所造成的环境污染问题已成为近年来亟待解决的问题. 以前期构建的嗜热偶氮染料降解复合菌群为研究对象,探究其在不同初始pH、培养温度、染料浓度及不同结构偶氮染料的脱色特性,并对不同浓度下染料的降解进行动力学分析;通过紫外-可见光扫描、红外光谱扫描及酶活性变化等分析偶氮染料的生物降解情况. 此外,还将通过植物毒理性实验来验证偶氮染料降解后的脱毒情况. 研究发现,该复合菌群在初始pH为8、温度为55 ℃的条件下脱色效果最佳,在含400 mg/L直接黑G的脱色培养基中静置培养48 h后,脱色率高达100%;且对直接黑G具有较高的耐受能力,在 mg/L的条件下脱色率仍高达70%;对不同结构的偶氮染料均表现出较好的脱色性能;动力学分析发现其最佳脱色速率与浓度分别为40.597 3 mg g-1 h-1、484.337 6 mg/L. 通过紫外-可见光扫描及红外光谱扫描分析发现偶氮染料直接黑G在降解前后化学键及表面官能团发生了明显的变化;酶活性分析发现偶氮染料降解酶在降解后显著提高. 此外,植物毒理性实验证明经复合菌群降解后的染料代谢产物对植物的毒性大幅度降低,可能被降解为其他低毒性物质. 本研究结果表明该复合菌群具有较好的染料脱色降解性能,这将为偶氮染料的无污染化处理奠定理论基础. (图6 表4 参43)
Abstract:
Recently, the environmental pollution caused by azo dyes has become an urgent problem. Based on our previous study regarding the degradation of constructed azo dyes by thermophilic microflora, the decolorization characteristics of the azo dyes under different initial pH, temperature, dye concentration, and structures were explored by kinetic analyses. Specifically, the biodegradation of azo dyes were analyzed using a scanning ultraviolet-visible spectrophotometer, an infrared spectral scanner, and enzyme activity changes. In addition, the detoxification of the azo dye was verified by plant toxicity experiments. We found that the optimal decolorization and degradation conditions of the thermophilic microflora were at an initial pH of 8, a temperature of 55 ℃, and a decolorization rate of 400 mg/L, in which the Direct Black G dye reached 100% after 48 h. Furthermore, the thermophilic microflora had a high tolerance to Direct Black G, despite the decolorization rate reaching 70% at a Direct Black G concentration of 3 000 mg/L. In addition, the thermophilic microflora showed a better decolorization performance when using different structures of the azo dyes. Furthermore, the kinetic analysis revealed that the optimal decolorization rate and concentration were 40.597 3 mg g-1 h-1 and 484.337 6 mg/L, respectively. Through the scanning ultraviolet-visible spectrophotometer and the infrared spectral scanning analysis, the chemical bonds and the surface functional group of the azo dyes were shown to have changed significantly before and after degradation, while the enzyme activity analysis showed that the azo dye-degrading enzyme significantly increased after degradation. Finally, the plant toxicity experiment proved that the toxicity of azo dye metabolites was greatly reduced in plants after being degraded by the thermophilic microflora, which may be due to their transformation into other low-toxic substances. Hence, this work demonstrated that this microflora improved the decolorization and degradation performance of the dye, which can act as a theoretical foundation for the non-polluting treatment of azo dyes.

参考文献/References:

1 宋昭仪, 胥维昌, 马文静, 胡金玲, 杨洪新. 偶氮染料废水处理技术及研究进展[J]. 染料与染色, 2018, 55 (6): 50-54 [Song ZY, Xu WC, Ma WJ, Hu JL, Yang HX. Advances in research and treatment of azo dye wastewater [J]. Dyes Dyeing, 2018, 55 (6): 50-54]
2 巴桑. 偶氮染料与化合物的颜色及危害[J]. 西藏科技, 2015 (1): 38-39 [Ba S. Color and harm of azo dyes and compounds [J]. Tibet Sci Technol, 2015 (1): 38-39]
3 李威, 崔岱宗, 林璐瑶, 邸新, 李少龙, 赵敏. 一株偶氮染料高效降解菌的筛选及其降解特性分析[J]. 农产品加工, 2015 (6): 10-14 [Li W, Cui DZ, Lin LY, Di X, Li SL, Zhao M. Screening and degradation characteristics of an azo dye-efficient degrading bacterium [J]. Agricult Prod Processing, 2015 (6): 10-14]
4 Modi HA, Garima R, Chetan A. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent [J]. Bioresour Technol, 2010, 101 (16): 6580-6583
5 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 53 (3): 45-51 [Zhang HC, Xiong GC. Research progress in the treatment of azo dye wastewater [J]. Dye Color, 2016, 53 (3): 45-51]
6 董振,刘亮,郝艳,蒋继宏,刘伟杰.偶氮染料废水处理技术的研究进展[J]. 水处理技术, 2017, 43 (4): 6-10 [Dong Z, Liu L, Hao Y, Jiang JH, Liu WJ. Research progress in azo dye wastewater treatment technology [J].Technol Water Treatment, 2017, 43 (4): 6-10]
7 郑洁. 生物法对偶氮染料废水脱色的研究[J]. 科技创新与应用, 2018 (32): 64-65 [Zheng J. Study on decolorization of azo dye wastewater by biological method [J]. Sci Technol Innov Appl, 2018 (32): 64-65]
8 花莉, 解井坤, 朱超, 马宏瑞, 彭香玉. 微生物对偶氮染料脱色降解的研究进展[J]. 西北农林科技大学学报, 2015, 43 (10): 103-113 [Hua L, Xie JK, Zhu C, Ma HR, Peng XY. Research progress of microbial decolorization and degradation of azo dyes [J]. J NW A&F Univ, 2015, 43 (10): 103-113
9 葛飞, 石贝杰, 唐尧, 杨良军, 郑述祥, 张谐天, 段震超. 11株白腐真菌对5种偶氮染料脱色效果比较及其脱色条件优化[J]. 环境工程学报, 2016, 10 (2): 963-970 [Ge F, Shi BJ, Tang Y, Yang LJ, Zheng SX, Zhang XT, Duan ZC. Comparison of decolorization of five azo dyes by 11 white rot fungi and optimization of their decolorization conditions [J]. J Environ Eng, 2016, 10 (2): 963-970]
10 Mokhtar N, Aziz EA, Aris A, Ishak WFW, Ali NSM. Biosorption of azo-dye using marine macro-alga of Euchema spinosum [J]. J Environ Chem Eng, 2017, 5 (6): 5721-5731
11 都林娜, 李刚, 王阳, 泮琇, 裘波音. 细菌降解偶氮染料的研究进展[J]. 工业水处理, 2015, 35 (12): 1-4 [Du LN, Li G, Wang Y, Pan X, Qiu BY. Research progress of bacterial degradation of azo dyes [J]. Ind Water Treatment, 2015, 35 (12): 1-4]
12 胡景华, 朱向东, 孔令保, 赖芬菊, 刘好桔, 陈浪, 张庆华. 一株嗜热偶氮染料脱色菌的分离鉴定及其脱色特性[J]. 环境工程学报, 2016, 10 (8): 4563-4568 [Hu JH, Zhu XD, Kong LB, Lai FJ, Liu HJ, Chen L, Zhang QH. Isolation, identification and decolorization of a thermophilic azo dye decolorizing bacteria [J]. J Environ Eng, 2016, 10 (8): 4563-4568]
13 张金平, 阚振荣, 苏维. 混合培养体系对实际染料废水的脱色与降解研究[J]. 安徽农业科学, 2011, 39 (18): 11032-11034 [Zhang JP, Yan ZR, Su W. Study on decolorization and degradation of actual dye wastewater by mixed culture system [J]. J Anhui Agric Sci, 2011, 39 (18): 11032-11034]
14 Chen Y, Feng LL, Li HG, Wang YX, Chen GT, Zhang QH. Biodegradation and detoxification of Direct Black G textile dye by a newly isolated thermophilic microflora [J]. Bioresour Technol, 2018, 250: 650-657
15 Zimmermann T, Kulla HG, Leisinger T. Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem, 1982, 129 (1): 197-203
16 崔岱宗. 偶氮染料脱色细菌的脱色特性及偶氮还原机理的研究[D]. 哈尔滨: 东北林业大学, 2012 [Cui DZ. Study on decolorization characteristics and azo reduction mechanism of azo dye decolorizing bacteria [D]. Haerbin: Northeast Forestry University, 2012]
17 Legerská B, Chmelová D, Ondrejovi M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor [J]. J Biotechnol. 2018, 285: 84-90
18 Naveen K, Surbhi S, Tithi M, Rachana S, Simran T, Indu ST. Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: process optimization using Box Behnken design model and toxicity assessment [J]. Bioresour Technol, 2019, 8: 100311
19 Kshama B, Payal A, Nikhil B, Datta M. Community synergism: degradation of triazine dye reactive Black 1 by mixed bacterial cultures KND_PR under microaerophilic and aerobic conditions [J]. Environ Proc, 2019, 6 (3): 713-739
20 Asses N, Ayed L, Hkiri N, Hamdi M. Congo Red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway [J]. BioMed Res Int, 2018, 2018: 1-9
21 Chen KC, Wu JY, Liou DJ, Wang CJ. Decolorization of the textile dyes by newly isolated bacterial strains [J]. J Biotechnol, 2003, 101 (1): 57-68
22 甘国娟, 田红灯, 潘永龙, Asit Mazumder, 潘响亮, 梁岩. 一株新的高效偶氮染料脱色菌Paenibacillus dendritiformis GGJ7及其脱色作用[J]. 应用与环境生物学报, 2018, 24 (3): 563-569 [Gan GJ, Tian HD, Pan YL, Asit M, Pan XL, Liang Y. A new high-efficiency azo dye decolorizing bacteria Paenibacillus dendritiformis GGJ7 and its decolorization [J]. J Appl Environ Biol, 2018, 24 (3): 563]
23 惠丰立, 牛秋红, 刘征, 柯涛, 陈长路, 袁伟. 活性红BF-3BN脱色菌群的构建及特性研究[J]. 环境工程学报, 2011, 5 (7): 1538-1541 [Hui FL, Niu QH, Liu Z, Ke T, Chen CL, Yuan W. Study on the construction and characteristics of reactive red BF-3BN decolorizing bacteria [J]. J Environ Eng, 2011, 5 (7): 1538-1541]
24 苏萌, 陶然, 杨扬, 麦晓蓓, 张敏, 王团团. 偶氮染料脱色菌 Lysinibacillus sp. FS1的脱色性能[J]. 环境工程学报, 2015, 9 (10): 4664-4672 [Su M, Tao R, Yang Y, Mai XB, Zhang M, Wang TT. Decolorization performance of azo dye decolorizing bacteria Lysinibacillus sp. FS1 [J]. J Environ Eng, 2015, 9 (10): 4664-4672]
25 Boonyakamol A, Imai T, Chairattanamanokorn P, Higuchi T, Sekine M, Ukita M. Reactive Blue 4 decolorization under mesophilic and thermophilic anaerobic treatments [J].Appl Biochem Biotechnol, 2009, 152 (3): 405-417
26 Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K. Characterization of a novel thermostable Mn (II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8 [J]. J Biol Chem, 2003: 21483-21492
27 Medhat M, El-Zaiat SY, Altalbawy, Farag MA, Saleh, Hagar M. Characterization of the physical properties of azo merocyanine dyes in different solvents and concentrations [J]. Optik, 2017: 104-112
28 陈燕, 王园秀, 肖婷, 沈飞, 王春莲, 张庆华. 嗜热复合菌系对不同结构偶氮染料的转化脱色性能[J]. 江西农业大学学报, 2017, 39 (1): 153-160 [Chen Y, Wang YX, Xiao T, Shen F, Wang CL, Zhang QH. Conversion and decolorization of different structures of azo dyes by thermophilic composite strains [J]. J Jiangxi Agric Univ, 2017, 39 (1): 153-160]
29 Kaur B, Kumar B, Garg N, Kaur N. Statistical optimization of conditions for decolorization of synthetic dyes by Cordyceps militaris MTCC 3936 using RSM. [J]. BioMed Res Int, 2015, 2015: 536745
30 Singh A. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies [J]. Crit Rev Env Sci Technol, 2011, 41 (9): 807-878
31 Kalyani DC, Patil PS, Jadhav JP, Govindwar SP. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1 [J]. Bioresour Technol, 2008, 99 (11): 4635-46
32 Quan XC, Tang H, Xiong WC, Yang ZF. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophe-noxyacetic acid [J]. J Hazard Mater, 2010, 179 (1-3): 1136-1142
33 王震文. 一种降解偶氮染料细菌菌株的筛选、鉴定及其脱色条件与机理研究[D]. 扬州: 扬州大学, 2012 [Wang ZW. Screening, identification, decolorization conditions and mechanisms of bacterial strains for the degradation of azo dyes [D]. Yangzhou: Yangzhou University, 2012]
34 孔春雷, 孙晓蕾, 周豪, 马桥, 张旭旺, 沈娥, 周集体, 曲媛媛. 菌株Acinetobacter sp.C-2对酸性红GR的脱色研究[J]. 环境科学与技术, 2013, 36 (3): 83-88 [Kong CL, Sun XL, Zhou H, Zhang XW, Shen E, Zhou JT, Qu YY. Biodecolorization of acid red GR by a newly isolated strain Acinetobacter sp. C-2 [J]. Environ Sci Technol, 2013, 36 (3): 83-88]
35 谢学辉, 范凤霞, 袁学武, 刘娜, 柳建设. 高效混合菌群FF的筛选及其对活性黑5的脱色作用[J]. 东华大学学报, 2013, 39 (6): 802-813 [Xie XH, Fan FX, Yuan XW, Liu N, Liu JS. Screening of high-efficiency mixed flora FF and its decolorization effect on reactive black 5 [J]. J Donghua Univ, 2013, 39 (6): 802-813]
36 王田田, 田姝. 纺织品中常见5种芳香胺鉴定体系的建立[J]. 针织工业, 2015 (9): 71-74 [Wang TT, Tian S. Establishment of five aromatic amine identification systems commonly used in textiles [J]. Knitting Ind, 2015 (9): 71-74]
37 Harshad L, Sanjay G, Diby P. Low-cost biodegradation and detoxification of textile azo dye C.I. Reactive Blue 172 by Providencia rettgeri strain HSL1 [J]. J Chem, 2015: doi 10.1155/2015/894109
38 Ayed L, Mahdhi A, Cheref A, Bakhrouf A. Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization [J]. Desalination, 2011, 274 (1-3): 272-277
39 张娜. 偶氮染料降解菌的筛选及其降解机理初探[D]. 济南: 山东大学, 2016 [Zhang N. Screening of azo dye-degrading bacteria and its degradation mechanism [D]. Jinan: Shandong University, 2016]
40 黄春梅. 偶氮染料的生物脱色及中间产物苯胺类的生物降解特性研究[D]. 广州: 华南理工大学, 2012 [Huang CM. Biological decolorization of azo dyes and biodegradation characteristics of intermediate aniline [D]. Guangzhou: South China University of Technology, 2012]
41 Chen Y, Zhang LZ, Feng LL, Chen GT, Wang YX, Zhai ZJ, Zhang QH. Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology [J]. Environ Sci Pollut Res Int, 2019, 26 (24): 24658-24671
42 齐澄. 一株偶氮染料活性黑5降解菌的筛选、鉴定与其脱色条件及机理研究[D]. 南京: 南京农业大学, 2016 [Qi C. Screening, identification and decolorization conditions and mechanism of an azo dye Reactive Black 5 degrading bacteria [D]. Nanjing: Nanjing Agricultural University, 2016]
43 Akkaya A, Ozseker EE, Akdogan HA. Degradation of dyes by laccase [J]. Anal Lett, 2016, 49 (6): 790-798

相似文献/References:

[1]刘生浩,史玉英,娄无忌,等.青霉菌P-93对偶氮染料的降解特性研究[J].应用与环境生物学报,1995,1(02):168.
 Liu Shenghao,Shi Yuying,Lou Wuji,et al.PROPERTIES OF AZO DYES DEGRADATION BY PENICILLIUM P-93[J].Chinese Journal of Applied & Environmental Biology,1995,1(04):168.
[2]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):978.[doi:10.3724/SP.J.1145.2012.00978]
[3]甘国娟,田红灯,潘永龙,等.一株新的高效偶氮染料脱色菌Paenibacillus dendritiformis GGJ7及其脱色作用[J].应用与环境生物学报,2018,24(03):563.[doi:10.19675/j.cnki.1006-687x.2017.03045]
 GAN Guojuan,,et al.A new efficient azo dye-decolorizing bacterium Paenibacillus dendritiformis GGJ7 and its decolorization process[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):563.[doi:10.19675/j.cnki.1006-687x.2017.03045]
[4]张珩琳,杨婧,周浩,等.Cupriavidus metallidurans SHE胞内提取物合成纳米金及其催化应用[J].应用与环境生物学报,2019,25(02):457.[doi:10.19675/j.cnki.1006-687x.2018.07023]
 ZHANG Henglin,YANG Jing,ZHOU Hao,et al.Biosynthesis of gold nanoparticles by the cell-free extracts of Cupriavidus metallidurans SHE and its catalytic applications[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):457.[doi:10.19675/j.cnki.1006-687x.2018.07023]
[5]张庆华,陈国涛,冯琳琳,等.混合菌群对偶氮染料的脱色降解研究进展[J].应用与环境生物学报,2020,26(02):469.[doi:10.19675/j.cnki.1006-687x.2019.06009]
 ZHANG Qinghua,CHEN Guotao,FENG Linlin,et al.Research progress on microbial decolorization and degradation of azo dyes[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):469.[doi:10.19675/j.cnki.1006-687x.2019.06009]

更新日期/Last Update: 2020-08-25