|本期目录/Table of Contents|

[1]王薪淯,朱晓宇,李海翔,等.[综 述] 乳酸碳链延长技术及其在有机废弃物资源化中的应用研究进展[J].应用与环境生物学报,2020,26(04):827-835.
 WANG Xinyu,ZHU Xiaoyu?,et al.The biotechnology of lactate chain elongation and its current advances in n-caproate production from organic waste streams[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):827-835.

[综 述] 乳酸碳链延长技术及其在有机废弃物资源化中的应用研究进展()




The biotechnology of lactate chain elongation and its current advances in n-caproate production from organic waste streams
1桂林理工大学环境科学与工程学院,广西环境污染控制理论与技术重点实验室 桂林 541004
2中国科学院成都生物研究所,中国科学院环境与应用微生物重点实验室&四川省环境微生物重点实验室 成都 610041
3常州大学环境与安全工程学院 常州 213164
WANG Xinyu1 2 ZHU Xiaoyu2? LI Haixiang1? WEI Yong3 FENG Xin2 REN Bing2 3 & HE Yong2 3
1 Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China 2 Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences & Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China 3 School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
chain elongation lactic acid n-caproate organic waste Ruminococcaceae reactor microbiome
资源化利用是有机废弃物处理处置的重要方向,降低成本和提高产物的附加值是推动有机废弃物资源化利用的重要引擎,也是巨大挑战. 近年来,在该领域发展出了一种基于羧酸平台的乳酸合成己酸的碳链延长新技术. 本文首先介绍了乳酸碳链延长技术的代谢机制以及相关功能微生物. 该技术的核心是利用乳酸作为电子供体,在特定微生物(如埃氏巨型球菌Megasphaera elsdenii、瘤胃球菌Ruminococcaceae strain CBP6以及反应器混合微生物)的作用下,将乙酸等短链脂肪酸经碳链延长过程转化为含有6个碳原子的中链脂肪酸己酸. 然后详细介绍了该技术在富含乳酸的废弃物中的应用研究进展. 在有机质含量比较高的废弃物如餐厨垃圾、乳清废水、酿酒废水中均存在高浓度的乳酸,这一类废弃物具有最终资源化为己酸的潜力. 进一步分析了影响该技术效能的关键因子,包括环境pH、温度以及电子供体和受体. 最后总结了乳酸碳链延长技术相对于传统废弃物资源化处理技术的优、劣势. 乳酸碳链延长技术在有机废弃物的资源化处理领域已表现出巨大的应用潜力,未来需要进一步提高己酸产物效价和降低分离提纯成本. (图2 表3 参66)
The demand for biochemical energy and biofuels will continue to grow alongside the increasing costs for treating waste biomass. Thus, reducing costs and enhancing product value are not only key drivers for resource recovery development from waste biomass but also big challenges. Elongating carboxylates to medium-chains using lactate as an electron donor is a novel biotechnological approach. Driven by lactate, functional bacteria (e.g. Megasphaera elsdenii, Ruminococcaceae strain CBP6 and mix-culture microbiomes) elongate the short-chain carboxylates (e.g. acetate) into the medium-chain carboxylate, n-caproate. In this work, we determined the metabolic pathway of lactate chain elongation and listed the relevant functional bacteria. Thereafter, we reviewed the development of the lactate chain elongation technology in the context of converting organic waste streams into n-caproate, while summarizing both the advantages and the challenges of this technology. Given that organic waste streams (e.g. food waste, acid whey and liquor wastewater) usually contain a large amount of carbohydrates that can be fermented into lactate, this biotechnological approach could provide a promising opportunity for converting the energy embedded in the organic waste steams into n-Caproic acid without an electron donor (i.e. carbon source). We further analyzed the key factors affecting the performance of the technology, including pH, temperature as well as electron donors and acceptors. Hence, our proposed technology includes the dual benefit of low cost and high value in terms of its bioproducts, which would greatly improve production efficiency and sustainability.


1 孙营军. 杭州市餐厨垃圾现状调查及其厌氧沼气发酵可行性研究[D]. 杭州: 浙江大学, 2008 [Sun YJ. Investigation and anaerobic digestion feasibility of food waste in Hangzhou [D]. Hangzhou: Zhejiang University, 2008]
2 王智博, 天水市餐厨垃圾资源化技术路线及主体工艺设计[D]. 兰州: 兰州大学, 2013 [Lanzhou: Food waste recycling technical route and process design of Tianshui city [D]. Lanzhou: Lanzhou University, 2013]
3 Marshall CW, LaBelle EV, May HD. Production of fuels and chemicals from waste by microbiomes [J]. Curr Opin Biotechnol, 2013, 24 (3): 391-397
4 Agler MT, Wrenn BA, Zinder SH, Angenent LT. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform [J]. Trends Biotechnol, 2011, 29 (2): 70-78
5 Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJ, Plugge CM, Strik DP, Grootscholten TI, Buisman CJ, Hamelers HVM. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals [J]. Environ Sci Technol, 2016, 50 (6): 2796-2810
6 Cavalcante WD, Leitao RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: a review [J]. Process Biochem, 2017, 54: 106-119
7 Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol [R]. NREL Technical Report, 2011
8 Khor WC, Andersen S, Vervaeren H, Rabaey K. Electricity-assisted production of caproic acid from grass [J]. Biotechnol Biofuels, 2017, 10: 180
9 National Center for Biotechnology Information. PubChem Database [DB/OL]. Hexanoate, CID = 4398339, https://pubchem.ncbi.nlm.nih.gov/compound/Hexanoate
10 Xiao ZB, Yu D, Niu YW, Chen F, Song SQ, Zhu JC, Zhu GY. Characterization of aroma compounds of Chinese famous liquors by gas chromatography–mass spectrometry and flash GC electronic-nose [J]. J Chromatogr B, 2014, 945: 92-100
11 National Center for Biotechnology Information. PubChem Database [DB/OL]. Methyl hexanoate, CID = 7824, https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-hexanoate
12 Ansorge-Schumacher MB, Thum O. Immobilised lipases in the cosmetics industry [J]. Chem Soc Rev, 2013, 42 (15): 6475-6490
13 Dhake KP, Thakare DD, Bhanage BM. Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds [J]. Flavour Fragrance J, 2013, 28 (2): 71-83
14 Geller DP, Goodrum JW. Effects of specific fatty acid methyl esters on diesel fuel lubricit [J]. Fuel, 2004, 83 (17-18): 2351-2356
15 Van Immerseel F, Russell JB, Flythe MD, Gantois I, Timbermont L, Pasmans F, Haesebrouck F, Ducatelle R. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy [J]. Avian Pathol, 2006, 35 (3): 182-188
16 de los Santos FS, Donoghue AM, Venkitanarayanan K, Metcalf JH, Reyes-Herrera I, Dirain ML, Aguiar VF, Blore PJ, Donoghue DJ. The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens [J]. Poultry Sci, 2009, 88 (1): 61-64
17 National Center for Biotechnology Information. PubChem Database [DB/OL]. Hexanal, CID = 6184, https://pubchem.ncbi.nlm.nih.gov/compound/Hexanal
18 Berk BA, Packer RMA, Law TH, Wessmann A, Bathen-Nothen A, Jokinen TS, Knebel A, Tipold A, Pelligand L, Volk HA. A double-blinded randomised dietary supplement crossover trial design to investigate the short-term influence of medium chain fatty acid (MCT) supplement on canine idiopathic epilepsy: study protocol [J]. BMC Vet Res, 2019, 15: 181
19 National Center for Biotechnology Information. PubChem Database [DB/OL]. CID = 12419, https://pubchem.ncbi.nlm.nih.gov/compound/12419
20 Ilaria C, Stefano T, Paola IG, Damiana P, Mirco Z, Sara F, Gabriele L, Pierluigi LC, Liborio S, Vincenzo DL, Claudia R. Serum steroid pro?ling by liquid chromatography-tandem mass spectrometry for the rapid confirmation and early treatment of congenital adrenal hyperplasia: A neonatal case report [J]. Metabolites, 2019, 9 (12): 284
21 Jiang X, Tang F, Feng Y, Li B, Jia XF, Tang CF, Liu CF, Huang YL. The adjustment of 17-hydroxyprogesterone cut-off values for congenital adrenal hyperplasia neonatal screening by GSP according to gestational age and age at sampling [J]. J Pediatr Endocrinol Metab, 2019, 32 (11): 1253-1258
22 Urban C, Xu JJ, Strauber H, Dantas TRD, Muhlenberg J, Hartig C, Angenent LT, Harnisch F. Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion [J]. Energy Environ Sci, 2017, 10 (10): 2231-2244
23 Harvey BG, Meylemans HA. 1-Hexene: a renewable C6 platform for full-performance jet and diesel fuels [J]. Green Chem, 2014, 16 (2): 770-776
24 Han WH, He PJ, Shao LM, Lu F. Metabolic interactions of a chain elongation microbiome [J]. Appl Environ Microbiol, 2018, 84 (22): e01614-18
25 Wu QL, Guo WQ, You SJ, Bao X, Luo HC, Wang HZ, Ren NQ. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply [J]. Bioresour Technol, 2019, 291: 121573
26 Wu QL, Guo WQ, Bao X, Meng XB, Yin RL, Du JS, Zheng HS, Feng XC, Luo HC, Ren NQ. Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest [J]. Water Res, 2018, 145: 650-659
27 Barker HA, Kamen MD, Bornstein BT. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium Kluyveri [J]. PNAS, 1945, 31 (12): 373
28 Schoberth S, Gottschalk G. Considerations on the energy metabolism of Clostridium kluyveri [J]. Arch Lebensmittelhyg, 1969, 65 (4): 318-328
29 Kenealy WR, Cao Y, Weimer PJ. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol [J]. Appl Microbiol Biotechnol, 1995, 44 (3): 507-513
30 Roddick FA, Britz ML. Production of hexanoic acid by free and immobilised cells of Megasphaera elsdenii: Influence of in-situ product removal using ion exchange resin [J]. J Chem Technol Biot, 1997, 69 (3): 383-391
31 Zhu XY, Tao Y, Liang C, Li XZ, Wei N, Zhang WJ, Zhou Y, Yang YF, Bo T. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production [J]. Sci Rep, 2015, 5: 14360
32 Russell JB, Hino T. Regulation of lactate production in streptococcus bovis: a spiraling effect that contributes to rumen acidosis [J]. J Dairy Sci, 68 (7): 1712-1721
33 Gullón B, Yánez R, Alonso JL, Parajó JC. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation [J]. Bioresource Technol, 99 (2): 308-319
34 Yang SY, Ji KS, Baik YH, Kwak WS, McCaskey TA. Lactic acid fermentation of food waste for swine feed [J]. Bioresour Technol, 97 (15): 1858-1864
35 Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits [J]. J Biotechnol, 2011, 156 (4): 286-301
36 Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies - a review [J]. J Chem Technol Biotechnol, 2006, 81 (7): 1119-1129
37 Nzeteu CO, Trego AC, Abram F, O’Flaherty V. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system [J]. Biotechnol Biofuels, 2018, 11: 108
38 Xu JJ, Hao JX, Guzman JJL, Spirito CM, Harroff LA, Angenent LT. Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: no external e-donor [J]. Joule, 2019, 3 (3): 885-888
39 Ge SJ, Usack JG, Spirito CM, Angenent LT. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction [J]. Environ Sci Technol, 2015, 49 (13): 8012-8021
40 Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction [J]. Environ Sci Technol, 2018, 52 (22): 13438-13447
41 Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass [J]. Energy Environ Sci, 2011, 4 (1): 216-224
42 Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT. Chain elongation in anaerobic reactor microbiomes to recover resources from waste [J]. Curr Opin Biotechnol, 2014, 27: 115-122
43 Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li FL, Hagemeier C, Thauer RK, Gottschalk G. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features [J]. PNAS, 2008, 105 (6): 2128-2133
44 Zhu XY, Zhou Y, Wang Y, Wu TT, Li XZ, Li DP, Tao Y. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6 [J]. Biotechnol Biofuels, 2017, 10: 102
45 Tao Y, Zhu XY, Wang H, Wang Y, Li XZ, Jin H, Rui JP. Complete genome sequence of Ruminococcaceae bacterium CPB6: a newly isolated culture for efficient n-caproic acid production from lactate [J]. J Biotechnol, 2017, 259: 91-94
46 Marounek M, Fliegrova K, Bartos S. Metabolism and some characteristics of ruminal strains of Megasphaera-elsdenii [J]. Appl Environ Microbiol, 1989, 55 (6): 1570-1573
47 Marounek M, Petr O, Simunek J. Monensin has no effect on growth and metabolism of Megasphaera-elsdenii [J]. Folia Microbiol, 1993, 38 (5): 383-386
48 Hino T, Kuroda S. Presence of lactate-dehydrogenase and lactate racemase in Megasphaera-elsdenii grown on glucese or lactate [J]. Appl Environ Microbiol, 1993, 59 (1): 255-259
49 Counotte GHM, Prins RA. Regulation of lactate metabolism in the rumen [J]. Vet Res Commun, 1981, 5 (1): 101-115
50 Weimer PJ, Moen GN. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81 [J]. Appl Microbiol Biotechnol, 2013, 97 (9): 4075-4081
51 Andersen SJ, Candry P, Basadre T, Khor WC, Roume H, Hernandez-Sanabria E, Coma M, Rabaey K. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation [J]. Biotechnol Biofuels, 2015, 8: 22
52 Kucek LA, Nguyen M, Angenent LT. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome [J]. Water Res, 2016, 93: 163-171
53 Jeon BS, Kim S, Sang BI. Megasphaera hexanoica sp nov., a medium-chain carboxylic acid-producing bacterium isolated from a cow rumen [J]. Int J Syst Evol Microbiol, 2017, 67 (7): 2114-2120
54 鲁少文, 魏翠翠, 李泽华, 何晓红, 陶勇. 新型己酸菌强化对人工窖泥培养过程中的原核微生物群落结构及酸、酯含量的影响[J]. 应用与环境生物学报, 2020, 26 (1): 144-151 [Lu SW, Wei CC, Li ZH, He XH, Tao Y. Effects of a new caproic acid-producing bacteria on prokaryotic community structure and the content of acid and ester during the culture of artificial pit mud, Chin J Appl Environ Biol, 2020, 26 (1): 144-151]
55 郑少睿, 朱晓宇, 周立祥, 王薪淯, 顾烨. 氯化钠对乳酸合成己酸效能及功能微生物群落的影响[J]. 应用与环境生物学报, 2019, 25 (6): 1-14 [Zheng SR, Zhu XY, Zhou LX, Wang XY, Gu Y. Effects of sodium chloride on n-caproate production from lactate and the mixed microbial community. Chin J Appl Environ Biol, 2019, 25 (6): 1-14]
56 Wang H, Li XZ, Wang Y, Tao Y, Lu SW, Zhu XY, Li DP. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium [J]. Microb Cell Fact, 2018, 17: 99
57 Duber A, Jaroszynski L, Zagrodnik R, Chwialkowska J, Juzwa W, Ciesielski S, Oleskowicz-Popiel P. Exploiting the real wastewater potential for resource recovery - n-caproate production from acid whey [J]. Green Chem, 2018, 20 (16): 3790-3803
58 Lambrecht J, Cichocki N, Schattenberg F, Kleinsteuber S, Harms H, Muller S, Strauber H. Key sub-community dynamics of medium-chain carboxylate production [J]. Microb Cell Fact, 2019, 18: 92
59 Contreras-Dávila CA, Carrión VJ, Vonk VR, Buisman CNJ, Strik David PBTB. Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation [J]. Water Res, 2020, 169: 115215
60 Weimer PJ, Stevenson DM. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen [J]. Appl Microbiol Biotechnol, 2012, 94 (2): 461-466
61 VanKessel JAS, Russell JB. The effect of pH on ruminal methanogenesis [J]. FEMS Microbiol Ecol, 1996, 20 (4): 205-210
62 Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates [J]. Energy Environ Sci, 2012, 5 (8): 8189-8192
63 Raunkjaer K, Hvitvedjacobsen T, Nielsen PH. Measurement of pools of protein, carbohydrate and lipid in domestic waste-water [J]. Water Res, 1994, 28 (2): 251-262
64 Gómez X, Cuetos MJ, Prieto JI, Morán A. Bio-hydrogen production from waste fermentation: mixing and static conditions [J]. Renew Energ, 2009, 34 (4): 970-975
65 Arslan D, Steinbusch KJJ, Diels L, De WH, Hamelers HVM, Buisman CJN. Selective carboxylate production by controlling hydrogen, carbon dioxide and substrate concentrations in mixed culture fermentation [J]. Bioresour Technol, 2013, 136: 452-460
66 Piotr Oleskowicz-Popiel. Designing reactor microbiomes for chemical production from organic waste [J]. Trends Biotechnol, 2018, 36 (8): 747-750


 LIANG Cheng,TAO Yong,et al.Process construction and fermentation optimization for butyrate production from lactate*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):865.[doi:10.3724/SP.J.1145.2015.11061]
[2]王广林,邓辉,聂丽,等.卵形孢球托霉Gongronella butleri NL-15对石灰岩的侵蚀机制[J].应用与环境生物学报,2018,24(02):374.[doi:10.19675/j.cnki.1006-687x.2017.05018]
 WANG Guanglin,DENG Hui,NIE Li,et al.Mechanism of limestone corrosion by Gongronella butleri NL-15[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):374.[doi:10.19675/j.cnki.1006-687x.2017.05018]
 SHEN Mina,LU Zhenming,et al.Species-level diversity of lactate-producing bacteria in acetic acid fermentation of Zhenjiang aromatic vinegar[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1434.[doi:10.19675/j.cnki.1006-687x.2019.02005]
 ZHENG Shaorui,ZHU Xiaoyu**,et al.Effects of sodium chloride on n-caproate production from lactate and the mixed microbial community[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1441.[doi:10.19675/j.cnki.1006-687x.2019.02018]
 LAI Fan,,et al.Viscosity reduction of duckweed medium and fermentation to produce lactic acid[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):1010.

更新日期/Last Update: 2020-08-25