|本期目录/Table of Contents|

[1]李政,张珩琳,范书伶,等.[综 述] 金属元素与环境微生物的互作关系研究进展[J].应用与环境生物学报,2020,26(04):836-843.
 LI Zheng,ZHANG Henglin,FAN Shuling,et al.Interactions between metals and environmental microbes[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):836-843.
点击复制

[综 述] 金属元素与环境微生物的互作关系研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
836-843
栏目:
工业与环境微生物功能研究专栏
出版日期:
2020-08-25

文章信息/Info

Title:
Interactions between metals and environmental microbes
作者:
李政张珩琳范书伶杨颖李严曲媛媛
工业生态与环境工程教育部重点实验室,大连理工大学环境学院 大连 116024
Author(s):
LI Zheng ZHANG Henglin FAN Shuling YANG Ying LI Yan & QU Yuanyuan?
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
关键词:
金属元素微生物迁移转化工程应用
Keywords:
metal element microorganism transportation and transformation engineering application
摘要:
在自然环境、人工生态系统等不同的环境介质中,微生物能与各种金属及其化合物共存并产生相互作用,最终影响其在环境中的迁移速率、循环过程及分布状态. 本文综述了金属元素的生物地球化学循环、微生物与金属元素的互作机理以及在生产生活中的应用. 主要结论为:微生物通过生物矿化、生物浸出等方式使金属发生迁移和生物转化,进而影响其在不同环境介质中的迁移速率、毒性等理化性质,参与了金属地球化学循环的每一步. 微生物与金属相互作用的机理探索目前尚处于研究阶段,但较为认可的作用机制包括生物膜作用、电子传递和毒性效应等. 而在工业上,微生物与金属元素间的相互作用在微生物燃料电池、金属的回收利用、土壤中重金属污染的治理等诸多方面得到了广泛的应用. 未来可在群落水平上利用组学手段解析金属元素生物溶解与析出的调控网络及信号分子等作用机制,并利用基因工程或酶工程等技术开发可有效降低环境中重金属离子毒性的相关菌剂. (图2 表1 参61)
Abstract:
In different environments, such as natural environments or artificial ecosystems, microorganisms can coexist and interact with various metals and their compounds. These interactions affect the migration rates, circulation processes, and distribution states in the environment. This paper reviews the biogeochemical cycle of metal elements, the interaction mechanisms of microorganisms and metal elements, and their potential applications in production and life. The main conclusions are that microorganisms migrate and biotransform metals via biomineralization, bioleaching, and other related processes. This affects the physical and chemical properties (i.e., the migration rate and toxicity) of the environmental media, which indicates that the microbes participate in every step of the metal geochemical cycle. The mechanism of interaction between microorganisms and metals is the topic of ongoing research, but recognized processes include biofilm action, electron transport, and toxic effects. In industry, the interaction between microorganisms and metal elements has been widely used for microbial fuel cells, metal recycling, and the treatment of heavy metal pollution in soils. Finally, the cumulative research results are synthesized, and the future developments of this field are discussed. The mechanisms of regulation and metal element biolysis and precipitation should be analyzed at the community level, and techniques such as genetic or enzyme engineering could be used to develop new strains to reduce the toxicity of heavy metal ions in the environment.

参考文献/References:

1 Marchand C, Fernandez JM, Moreton B. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia) [J]. Sci Total Environ, 2016, 562: 216-227
2 Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review [J]. Int J Environ Res Public Health, 2017, 14 (12): 1504-1508
3 Thorley RM, Taylor LL, Banwart SA, Leake JR, Beerling DJ. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant Cell Environ, 2015, 38 (9): 1947-1961
4 Wolfgang E, Munich. The Effect of the Environment on Saint Petersburg’s Cultural Heritage [M]. Switzerland: Springer International Publishing, 2019
5 Li Y, Xu D, Chen C, Li X, Jia R, Zhang D, Gu T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. Am J Mater Sci Technol, 2018, 34 (10): 1713-1718
6 Peter T, Bobrowsky AM, Wu SB, Ajmal Z, Luo H, Dong R. Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens [J]. Sci Total Environ, 2018, 635: 1-9
7 Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Paul D. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes [J]. Sustainability, 2015, 7 (2): 2189-2212
8 Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS. Mineral–organic associations: formation, properties, and relevance in soil environments [J]. Adv Agron, 2015, 130: 109-140
9 Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica [J]. Appl Environ Microbiol, 2005, 71 (1): 371-375
10 Jacobson ME. Chemical and biological mobilization of Fe (III) in marsh sediments [J]. Biogep, 1994, 25 (1): 41-60
11 Yan G, Borah AJ, Wang L, Yang M. Recent advances in transition metal‐catalyzed methylation reactions [J]. Adv Synth Cata, 2015, 357 (7): 1333-1350
12 Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides [J]. Environ Sci Technol, 2014, 48 (16): 9133-9141
13 Thayer JS. Review: biological methylation of less-studied elements [J]. Appl Organomet Chem, 2010, 16 (12): 677-691
14 Reith F, Mcphail DC. Microbial influences on solubilisation and mobility of gold and arsenic in regolith samples from two gold mines in semi-arid and tropical Australia [J]. Geochim Cosmochim Acta, 2007, 71: 1183-1196
15 Cao LT, Kodera H, Abe K, Imachi H, Aoi Y, Kindaichi T, Ohashi A. Biological oxidation of Mn(II) coupled with nitrification for removal and recovery of minor metals by downflow hanging sponge reactor [J]. Water Res, 2015, 68: 545-553
16 Bargar J R, Fuller CC, Marcus MA, Brearley AJ, Rosa MPDL, Webb SM. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ [J]. Geochim Cosmochim Acta, 2009, 73 (4): 900-910
17 Dick GJ, Clement BG, Webb SM, Fodrie FJ, Bargar JR, Tebo BM. Enzymatic microbial Mn (II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume [J]. J Geochem Soc Meteoritical Soc, 2009, 73 (21): 6520-6530
18 Shrestha, RA, Lama, B, Joshi J, Sillianpaa M. Effects of Mn (II) and Fe (II) on microbial removal of arsenic (III) [J]. Environ Sci Pollut Res, 2008, 15: 303
19 Zheng X, Su YL, Chen YG. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity [J]. Environ Sci Technol, 2014, 48 (23): 13800-13807
20 Wang FY, Lin XG, Yin R. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case [J]. Environ Pollut, 2007, 147 (1): 250-255
21 Maréchal, Chloé N, Nicolas E, Franciss A. Abundance of zinc isotopes as a marine biogeochemical tracer [J]. Geochem Geophys Geosyst, 2000, 1 (5): 1999
22 Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate [J]. J Biosci Bioeng, 2015, 119 (6): 678-682
23 Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction [J]. Nat Rev Microbiol, 2006, 4 (10): 752-764
24 Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals [J]. Environ. Microbiol, 2012, 14 (7): 1646-1654
25 Tandukar M, Huber SJ, Onodera T, Pavinscis SG. Biological chromium (VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165
26 Nakatsu CH, Carmosinin BB, Beasley F, Kourtev P, Konopka A. Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr) [J]. Appl Environ Microbiol, 2005, 71 (12): 7679-7689
27 Miao Y, Liao R, Zhang XX, Wang Y, Wang Z, Shi P. Metagenomic insights into Cr (VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater [J]. Water Res, 2015, 76: 43-52
28 Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity [J]. Toxicol Appl Pharmacol, 2009, 238 (3): 215-220
29 Ruchita D, Wasiullah, Deepti M, Singh, U, Sahu A, Shukla R, Paul D. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes [J]. Sustainability, 2015, 7 (2): 2189-2212
30 Zhang Y, Yu L, Wu D, Huang, L, Zhou P, Quan X, Chen G. Dependency of simultaneous Cr (VI), Cu (II) and Cd (II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells [J]. J Power Sources, 2015, 273: 1103-1113
31 Dhas TS, Kumar VG, Abraham LS, Karthick V, Govindaraju K. Sargassum myriocystum mediated biosynthesis of gold nanoparticles [J]. Spectrochim Acta Part A, 2012, 99: 97-101
32 Abraham P, Vekateswarulu TC, Indira M, Dulla JB, Reddy R. Bioconcrete build buildings with quorum sensing molecules of biofilm bacteria [J]. J Pharm Sci Res, 2016, 8 (1): 10-14
33 Jonkers HM. A two component bacteria-based self-healing concrete [C]//Alexander M, Beushausen MD, Dehn F, Moyo P. Concrete Repair, Rehabilitation and Retrofitting. London: Tayor and Francrs Group, 2008
34 Hamdan N, Jr Kavazanjian E, Rittmann BE, Karatas I. Carbonate mineral precipitation for soil improvement through microbial denitrification [J]. Geomicrobiol J, 2017, 34 (2): 139-146
35 Zhu T, Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review [J]. Front Bioeng Biotechnol, 2016, 4: 4
36 Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM. Fungal transformations of uranium oxides [J]. Environ Microbiol, 2010, 9 (7): 1696-1710
37 Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, House JI. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils [J]. Soil Discussions, 2015, 2 (1): 537-586
38 Dang HY, Charles R. Microbial surface colonization and biofilm development in marine environments [J]. Microbiol Mol Biol Rev, 2015, 80 (1): 91-138
39 Li WW, Yu HQ. Insight into the roles of microbial extracellular polymer substances in metal biosorption [J]. Bioresour Technol, 2014, 160: 15-23
40 Jia FX, Yang Q, Liu XH, Li X, Li B, Zhang L, Peng Y. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms [J]. Environ Sci Technol, 2017, 51 (6): 3260-3268
41 Chenu C, Roberson EB, Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential [J]. Soil Biol Biochem, 1996, 28 (7): 877-884
42 Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Fredrickson JK. Extracellular electron transfer mechanisms between microorganisms and minerals [J]. Nat Rev Microbiol, 2016, 14 (10): 651
43 John R, Bargar A, Christopher CF, Brearley AJ, De L, Rosa M, Webb SM, Caldwell WA. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ [J]. J Geochem Soc Meteoritical Soc, 2009, 2 (15): 889-910
44 Di X, Xiao YY, Yang L, Huang W, Xie Y, Ye H, Lu G. Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors [J]. Ecotoxicol Environ Saf, 2019, 174 (15): 524-531
45 Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester [J]. J Biosci Bioeng, 2012, 114 (4): 446-452
46 DalCorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants [J]. Metallomics, 2014, 6 (10): 1770-1788
47 Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment [J]. Mol Clin Environ Toxicol, 2012, 101 (101): 133-164
48 向元英, 杨暖, 孙霞, 张磊, 李大平, 梁程. 单室微生物电解池强化混合脂肪酸产甲烷 [J]. 应用与环境生物学报, 2016, 22 (5): 872-877 [Xiang YY, Yang N, Sun N, Sun X, Zhang L, Li DP, Liang C. Enhanced methane production from SCFAs wastewater using single-chamber microbial electrolysis cell [J]. Chin J Appl Environ Biol, 2016, 22 (5): 872-877]
49 Kato S, Hashimoto K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals [J]. PNAS, 2012, 109 (25): 10042-10046
50 Baudler A, Schmidt I, Langner M, Greiner A, Schr?der U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems [J]. Energy Environ Sci Energy, 2015, 8 (7): 2048-2055
51 Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Fredrickson JK. Extracellular electron transfer mechanisms between microorganisms and minerals [J]. Nat Rev Microbiol, 2016, 14 (10): 651
52 Malvankar NS, Lovle, DR. Microbial nanowires for bioenergy applications [J]. Curr Opin Biotechnol, 2014, 27: 88-95
53 Murray AJ, Singh S, Vavlekas D, Tolley MR, Macaskie LE. Continuous biocatalytic recovery of neodymium and europium [J]. RSC Adv, 2015, 5 (11): 8496-8506
54 Mishra D, Kim D J, Ralph DE, Ahn JG, Rhee YH. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans [J]. Waste Manage, 2008, 28 (2): 333-338
55 崔雨琪, 方迪, 毕文龙, 崔春红, 周立祥. 一株黑曲霉的分离鉴定及其对土壤重金属的生物浸出效果[J]. 应用与环境生物学报, 2014, 20 (3): 420-425 [Cui YQ, Fang D, Bi WL, Cui CH, Zhou LX. Isolation and identification of Isolation and identi cation of Aspergillus niger Y9 and its role in bioleaching of metal contaminants from soils [J]. Chin J Appl Environ Biol, 2014, 20 (3): 420-425]
56 Hocheng H, Hong T, Jadhav U. Microbial leaching of waste solder for recovery of metal [J]. Appl Biochem Biotechnol, 2014, 173 (1): 193-204
57 Luo H, Liu G, Zhang R, Bai Y, Fu S, Hou Y. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell [J]. J Hazard Mater, 2014, 270: 153-159
58 Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Chen L. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil [J]. Int Biodeterior Biodegrad, 2016, 107: 158-164
59 Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation [J]. Sci Total Environ, 2016, 563: 693-703
60 李霞, 张丹, 沈飞, 青会, 杨洋. 4种固定食用菌加工废弃物吸附剂对水中重金属Hg2+的吸附[J]. 应用与环境生物学报, 2017, 23 (5): 879-885 [Li X, Zhang D, Shen F, Qing H, Yang Y. Biosorption of mercury (Hg2+) from water by immobilized residues from four types of edible mushroom [J]. Chin J Appl Environ Biol, 2017, 23 (5): 879-885]
61 Ayangbenro A, Babalola O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents [J]. Int J Environ Res Public Health, 2017, 14 (1): 94

相似文献/References:

[1]万波,赵海,李安明,等.冬尖发酵的微生物学研究[J].应用与环境生物学报,1995,1(02):196.
 Wan Bo,Zhao Hai,Li Anming,et al.STUDY ON MICROORGANISMS IN DONGJIAN FERMENTATION[J].Chinese Journal of Applied & Environmental Biology,1995,1(04):196.
[2]张彤,朱怀兰,林哲.微生物絮凝剂的研究与应用进展[J].应用与环境生物学报,1996,2(01):95.
 Zhang Tong,Zhu Huailan,Lin Zhe.PROGRESSES OF MICROBIAL FLOCCULANT STUDIES AND APPLICATION[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):95.
[3]唐景春,KATAYAMA,Arata.醌类图谱分析在环境微生物生态测定中的应用[J].应用与环境生物学报,2004,10(04):530.
 TANG Jingchun,et al..Application of quinone profile analysis for the characterization of microbial ecology in environment[J].Chinese Journal of Applied & Environmental Biology,2004,10(04):530.
[4]陈济安,舒为群,张学奎,等.邻苯二甲酸二(2-乙基己基)酯酶促降解研究[J].应用与环境生物学报,2004,10(04):471.
 CHEN Jian,et al..Biodegradation of di(2ethylhexyl) phthlate(DEHP) by enzyme[J].Chinese Journal of Applied & Environmental Biology,2004,10(04):471.
[5]王璐,张宏武,张晓梅,等.微生物对生物柴油副产物甘油的利用研究进展[J].应用与环境生物学报,2008,14(06):885.[doi:10.3724/SP.J.1145.2008.00885]
 WANG Lu,ZHANG Hongwu,ZHANG Xiaomei & XU Ganrong*.Progress in Research of Microbial Utilization of Glycerol-containing Wastes from Biodiesel Production[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):885.[doi:10.3724/SP.J.1145.2008.00885]
[6]李秀艳,沈叶红,刘军,等.微生物在城市绿地消减暴雨径流污染过程中的作用[J].应用与环境生物学报,2010,16(02):240.[doi:10.3724/SP.J.1145.2010.00240]
 LI Xiuyan,SHEN Yehong,LIU Jun,et al.Effect of Microorganisms on Pollutant Reduction of Storm-water Runoff Through Urban Greenbelt[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):240.[doi:10.3724/SP.J.1145.2010.00240]
[7]张宇,乌恩,李重祥,等.长江中下游湖泊沉积物酶活性及其与富营养化的关系[J].应用与环境生物学报,2011,17(02):196.[doi:10.3724/SP.J.1145.2011.00196]
 ZHANG Yu,WU En,LI Chongxiang,et al.Enzyme Activity in Sediments and Its Relation with Eutrophication in the Lakes along the Yangtze River[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):196.[doi:10.3724/SP.J.1145.2011.00196]
[8]吴锡麟,叶功富,张尚炬,等.不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态[J].应用与环境生物学报,2011,17(05):645.[doi:10.3724/SP.J.1145.2011.00645]
 WU Xilin,YE Gongfu,ZHANG Shangju,et al.Contents of Some Mineral Elements and Their Resorption Efficiencies in Casuarina equisetifolia Branchlets Across a Coastal Gradient[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):645.[doi:10.3724/SP.J.1145.2011.00645]
[9]段斐,吴福忠,杨万勤,等.川西高山峡谷区暗针叶林粗木质残体金属元素贮量特征[J].应用与环境生物学报,2016,22(22卷04):623.[doi:10.3724/SP.J.1145.2016.03049]
 DUAN Fei,WU Fuzhong,YANG Wanqin**,et al.Metal elements storage of coarse woody debris in dark coniferous forests in the alpine valley of western Sichuan*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):623.[doi:10.3724/SP.J.1145.2016.03049]
[10]厉舒祯,沈文丽,邓晔,等.微生物还原Se(VI)和Se(IV)合成SeNPs机理研究新进展[J].应用与环境生物学报,2017,23(03):579.[doi:2016.07009]
 LI Shuzhen,SHEN Wenli,DENG Ye,et al.Advances in understanding the mechanisms underlying microbial reduction of Se (VI) and Se (IV) to SeNPs[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):579.[doi:2016.07009]

更新日期/Last Update: 2020-08-25