|本期目录/Table of Contents|

[1]吴福佳,孙博,陈旭黎,等.乐山大佛佛体表面植被空间异质性[J].应用与环境生物学报,2020,26(04):979-984.
 WU Fujia,SUN Bo,CHEN Xuli,et al.Spatial heterogeneity analysis of the vegetation on the surface of the Leshan Giant Buddha[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):979-984.
点击复制

乐山大佛佛体表面植被空间异质性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
979-984
栏目:
研究论文
出版日期:
2020-08-25

文章信息/Info

Title:
Spatial heterogeneity analysis of the vegetation on the surface of the Leshan Giant Buddha
作者:
吴福佳孙博陈旭黎杨天宇宋会兴
1四川农业大学风景园林学院 成都 611130 2中铁西北科学研究院有限公司 兰州 730000 3乐山大佛风景名胜区管理委员会 乐山 614003
Author(s):
WU Fujia1 SUN Bo2 CHEN Xuli1 YANG Tianyu3 & SONG Huixing1?
1 College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130,China 2 China Railway Northwest Research Institute Co., Ltd., Lanzhou 730000,China 3 Management Committee of the Leshan Giant Buddha Scenic Spot, Leshan 614003,China
关键词:
乐山大佛空间异质性物种多样性露天石刻
Keywords:
Leshan Giant Buddha spatial heterogeneity species diversity open-air stone carving
摘要:
佛体表面植被多样性及其空间分布特征不仅可以一定程度上表征植物侵蚀岩体的过程,而且对于乐山大佛景观保护与修复具有重要的实践意义. 依托2018-2019年乐山大佛修缮工程,系统调查乐山大佛佛体不同部位植物多样性特征,采用优势度、重要值、α多样性指数、主成分(PCA)分析和系统聚类等方法对其进行了空间异质性分析. 结果表明:乐山大佛佛体表面高等植物总覆盖率约70%,其中苔藓植物和维管植物分别占植被总盖度的27.5%和72.5%;共发现维管植物25科38属41种,其中草本植物占58.54%. 相对于佛体其他部位,左臂植被盖度最高达80%,头部及左右脚两处植被盖度最低(小于1%);根据α多样性指数分析,佛体右腿的Shannon-Weiner指数和Margalef丰富度指数最高,头部Pielou均匀度指数最高,左腿的Simpson优势度指数最高. 此外,系统聚类方法表明佛体左右两侧物种具有明显的差异,且左右两侧物种各自的相似度较高,意味着旅游活动对佛体表面植物多样性具有重要的影响. 这些结果可为乐山大佛佛体表面修复与保护方案的制订提供基础资料,也为更好地管理乐山大佛及相似露天石刻景观提供一定的科学支撑. (图2 表3 参30)
Abstract:
The vegetation diversity and spatial distribution of the Buddha body surface represents the erosion processes of plant to rock and plays an important role in protecting and repairing the Leshan Giant Buddha. Based on the renovation project of the Leshan Giant Buddha during 2018-2019, the surface plant diversity was investigated, and the spatial heterogeneity was analyzed via the dominance and importance values, diversity index, principal component (PCA) analysis, and systematic clustering. The total vegetation coverage of advanced plants on the surface of the Leshan Giant Buddha was approximately 70%, and moss and vascular plants accounted for 27.5% and 72.5% of the total vegetation coverage. There were 41 species belonging to 25 families of vascular plants, and herbs accounted for 58.54% of the total. Compared to other parts of the Buddha body, the highest vegetation coverage (80%) was observed on the left arm, and the lowest coverage (< 1%) was observed on the head and left foot. The highest α diversity, Shannon-Weiner, and Margalef richness index values were on the right leg of the Buddha body, the highest Pielou evenness index was on the head, and the highest Simpson dominance index was on the left leg. Systematic clustering indicated differences in the species on the left and right sides of the Buddha body, and similar species were found on the left and right sides. This suggests that tourism activities may have influenced the plant diversity on the Buddha body. These results provide basic information for the restoration and protection of the Leshan Giant Buddha and add to the scientific data for managing similar open-air stone landscapes.

参考文献/References:

1 素问. 中国28处世界遗产简介[J]. 寻根, 2002 (1): 65-75 [Su W. Synopsis of 28 world heritage sites in China [J]. Root Expl, 2002 (1): 65-75]
2 先锡文. 乐山市积极引导宗教坚持中国化方向[J]. 中国宗教, 2019 (1): 62-63 [Xian XW. Leshan city actively guides religions to stick to the direction of sinicization [J]. China Religion, 2019 (1): 62-63]
3 Zegeye AD, Langendoen EJ, Tilahun SA, Mekuria W, Poesen J, Steenhuis TS. Root reinforcement to soils provided by common Ethiopian highland plants for gully erosion control [J]. Ecohydrology, 2018, 11 (6): e1940
4 Abdi E, Saleh HR, Majnonian B, Deljouei A. Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran [J]. J Arid Land, 2019, 11 (1): 86-96
5 Baptista I, Ritsema C, Querido A, Ferreira AD, GeissenV. Improving rainwater-use in Cabo Verde drylands by reducing runoff and erosion [J]. Geoderma, 2015, 237-238: 283-297
6 Arellano G, J?rgensen PM, Fuentes AF, Loza MI, Torrez V, Mac?a MJ. Oligarchic patterns in tropical forests: role of the spatial extent, environmental heterogeneity and diversity [J]. J Biogeogr. 2016, 43 (3): 616-626
7 黄继忠, 宋绍雷, 董海燕, 陈学萍, 彭学义. 藻菌共生体对乐山大佛红砂岩风化影响初探[J]. 文物世界, 2018 (3): 72-76 [Huang JZ, Song SL, Dong HY, Chen XP, Peng XY. Preliminary study on the influence of algal symbiont on weathering of red sandstone of the Leshan Giant Buddha [J]. World Antiq, 2018 (3): 72-76]
8 王伯荪. 植物群落学[M]. 北京: 高等教育出版社, 1987 [Wang BS. Plant community [M]. Beijing: Higher Education Press, 1987]
9 马克平, 黄建辉, 于顺利, 陈灵芝. 北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995 (3): 268-277 [Ma KP, Huang JH, Yu SL, Chen LZ. Study on the diversity of plant communities in Dongling Mountain, Beijing Ⅱ: Richness, evenness and variation index of diversity [J]. Acta Ecol Sin, 1995 (3): 268-277]
10 Vijver MG, Brink PJVD. Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses [J]. PLoS ONE, 2014, 9 (2): e89837
11 周世强, 黄金燕, 谭迎春, 周小平, 王鹏彦, 张和民. 卧龙自然保护区大熊猫栖息地植物群落多样性研究Ⅱ. 植物群落的聚类分析[J]. 四川林勘设计, 2003 (3): 16-20 [Zhou SQ, Huang JY, Tan YC, Zhou XP, Wang PY, Zhang HM. Research on plant community ‘s in giant panda habitat of diversity of Wolong Natural Protection AreaⅡ. The clustering analysis of plant community [J]. Sichuan For Expl Design, 2003 (3): 16-20]
12 Godinez-Alvarez H, Morin C, Rivera-Aguilar V. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert [J]. Plant Biol, 2012, 14 (1): 157-162
13 Castillo-Monroy AP, Bowker MA, Maestre FT, Rodríguez-Echeverría S, Martinez I, Barraza-Zepeda CE, Escolar C. Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: Insights from a semi-arid Mediterranean environment [J]. J Veg Sci, 2011, 22 (1): 165-174
14 Xiao B, Veste M. Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China [J]. Appl Soil Ecol, 2017, 117-118: 165-177
15 Maestre FT, Escolar C, Bardgett RD, Dungait JA, Gozalo B, Ochoa V. Warming reduces the cover and diversity of biocrust-forming mosses and lichens, and increases the physiological stress of soil microbial communities in a semi-arid Pinus halepensis plantation [J]. Front Microbiol, 2015, 6: 865-877
16 景蕾, 芦建国, 夏雯. 南京市主城区苔藓植物多样性及其与环境的关系[J]. 应用生态学报, 2018, 29 (6): 1797-1804 [Jing L, Lu JG, Xia W. Diversity of bryophytes in urban area of Nanjing, China [J]. Chin J Appl Ecol, 2018, 29 (6): 1797-1804]
17 叶超, 郭忠录, 蔡崇法, 闫峰陵, 马中浩. 5种草本植物根系理化特性及其相关性[J]. 草业科学, 2017, 34 (3): 598-606 [Ye C, Guo ZL, Cai CF, Yan FL, Ma ZH. Relationship between root tensile mechanical properties and main chemical components of five herbaceous species [J]. Pratacult Sci, 2017, 34 (3): 598-606]
18 Fort F, Jouany C, Cruz P. Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies [J]. J Plant Ecol, 2013, 6 (3): 211-219
19 Sandel B, Monnet A, Vorontsova M. Multidimensional structure of grass functional traits among species and assemblages [J]. J Veg Sci, 2016, 27 (5): 1047-1060
20 刘鑫, 包维楷, 胡斌, 冯德枫, 庞学勇, 丁建林, 吴展波. 高寒山区道路边坡植被恢复物种选择及适宜性评估[J]. 应用与环境生物学报, 2016, 22 (6): 1015-1022 [Liu X, Bao WK, Hu B, Feng DF, Pang XY, Ding JL, Wu ZB. Plant species selection and adaptivity for vegetation restoration of alpine roadside slopes [J]. Chin J Appl Environ Biol, 2016, 22 (6): 1015-1022]
21 Hinsinger P, Fernandes Barros ON, Benedetti MF. Plant-induced weathering of a basaltic rock: experimental evidence [J]. Geochim Cosmochim Acta, 2001, 65 (1): 137-152
22 Li SF, Wang LJ, Deng CL, Gao WJ. Identification of male-specific AFLP and SCAR markers in the dioecious plant Humulus scandens [J]. Mol Cell Probe, 2017, 34: S1585666111
23 刘金平, 游明鸿, 张丽慧, 赵艳. 不同支持物对攀援植物——葎草雌雄株光合特性及生物量结构的影响[J]. 生态学报, 2015, 35 (18): 6032-6040 [Liu JP, You MH, Zhang LH, Zhao Y. External supports affect the photosynthetic characteristics and biomass allocation of the climbing plant Humulus scanden [J]. Acta Ecol Sin, 2015, 35 (18): 6032-6040]
24 Litrico I, Pailler T, Thompson JD. Gender variation and primary succession in a tropical woody plant, Antirhea borbonica (Rubiaceae) [J]. J Ecol, 2005, 93 (4): 705-715
25 St. John MG, Bellingham PJ, Walker LR, Orwin KH, Bonner KI, Dickie IA, Morse CW, Yeates GW, Wardle DA. Loss of a dominant nitrogen-fixing shrub in primary succession: consequences for plant and below-ground communities [J]. J Ecol, 2012, 100 (5): 1074-1084
26 Marteinsdóttir B, Svavarsdóttir K, Thórhallsdóttir TE. Multiple mechanisms of early plant community assembly with stochasticity driving the process [J]. Ecology, 2018, 99 (1): 91-102
27 Liu Y, De Boeck HJ, Li Z, Nijs I. Unimodal relationship between three-dimensional soil heterogeneity and plant species diversity in experimental mesocosms [J]. Plant Soil, 2019, 436 (1-2): 397-411
28 牛莉芹, 程占红, 赵蒙. 旅游干扰下五台山不同植被景观区物种多样性特征[J]. 应用与环境生物学报, 2012, 18 (4): 559-564 [Niu LQ, Cheng ZH, Zhao M. Plant species diversities of tourism disturbed landscapes in Wutai Mountains, China [J]. Chin J Appl Environ Biol, 2012, 18 (4): 559-564]
29 Schmucki R, Reimark J, Lindborg R, Cousins AO. Landscape context and management regime structure plant diversity in grassland communities [J]. J Ecol, 2012, 100 (5): 1164-1173
30 连宾, 陈烨, 朱立军, 杨瑞东. 微生物对碳酸盐岩的风化作用[J]. 地学前缘, 2008, 15 (6): 90-99 [Lian B, Chen Y, Zhu LJ, Yang RD. Progress in the study of the weathering of carbonate rock by microbes [J]. Earth Sci Front, 2008, 15 (6): 90-99]

相似文献/References:

[1]李翔,王海燕,秦倩倩,等.林分密度对半分解层凋落物现存量空间异质性的影响[J].应用与环境生物学报,2019,25(04):817.[doi:10.19675/j.cnki.1006-687x.2018.11032]
 LI Xiang,WANG Haiyan**,QIN Qianqian,et al.Effects of stand density on spatial heterogeneity of the standing crop in the semi-decomposition litter layer[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):817.[doi:10.19675/j.cnki.1006-687x.2018.11032]

更新日期/Last Update: 2020-08-25