|本期目录/Table of Contents|

[1]项丽慧,陈林,余文权,等.茶树GH1基因家族鉴定及其在茶鲜叶萎凋过程的表达[J].应用与环境生物学报,2020,26(04):878-885.
 XIANG Lihui,CHEN Lin,YU Wenquan & ZHANG Yinggen.Identification of the GH1 gene family in Camellia sinensis and expression analysis during the withering process of fresh tea leaves[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):878-885.
点击复制

茶树GH1基因家族鉴定及其在茶鲜叶萎凋过程的表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
878-885
栏目:
研究论文
出版日期:
2020-08-25

文章信息/Info

Title:
Identification of the GH1 gene family in Camellia sinensis and expression analysis during the withering process of fresh tea leaves
作者:
项丽慧陈林余文权张应根
1福建省农业科学院茶叶研究所 福州 350011 2福建省农业科学院 福州 350002
Author(s):
XIANG Lihui1 CHEN Lin1? YU Wenquan2 & ZHANG Yinggen1
1Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350011, China 2 Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
关键词:
茶树糖苷水解酶第1家族萎凋表达分析
Keywords:
Camellia sinensis glycoside hydrolase family 1 withering expression analysis
摘要:
糖苷水解酶第1家族基因(GH1)在茶叶香气形成中发挥着重要作用. 为了解茶树GH1家族成员的进化特性及其在茶鲜叶萎凋过程的表达规律,基于茶树基因组数据库,对GH1基因家族进行全基因组鉴定,并对其编码蛋白的理化性质、亚细胞定位、保守基序及其在不同组织和茶鲜叶萎凋过程的表达模式进行分析. 结果显示,茶树GH1基因家族共31个成员,分为5个亚家族,同一亚家族的GH1具有类似的保守基序,保守性较高. GH1基因编码142-871个氨基酸,GH1在细胞中分布很广,包括分泌通路、细胞核、胞浆等. GH1基因表达量从高到低依次为幼嫩茎段、幼根、幼果、成熟叶、嫩叶、顶芽、老叶和花. 在茶鲜叶萎凋过程中,大部分GH1基因在鲜叶和萎凋减重10%阶段优势表达,而CsGH1BG6、CsGH1BG7和CsGH1BG26在茶鲜叶萎凋减重20%至60%之间上调表达,这是GH1基因参与白茶加工品质调控的关键时期. 本研究表明上调表达的GH1基因对茶鲜叶的失水胁迫调控和萎凋过程香气的形成起到积极的作用,可作为进一步开展茶鲜叶萎凋过程品质形成研究的候选基因;结果可为茶叶加工品质调控奠定基础. (图5 表2 参30)
Abstract:
The glycoside hydrolase family 1 genes (GH1) play a vital role in the formation of tea aroma. This study aimed to understand the evolutionary characteristics of the GH1 family members and their expression during fresh tea leaf withering. The GH1 gene family members were identified from the tea genome database, and physicochemical properties, subcellular localization, and conserved motifs of their encoded proteins and the expression patterns in different tissues during the withering process were analyzed. Thirty-one GH1 gene family members were identified in 5 subgroups, and the subfamily genes had similar conservative motifs and were highly conserved. These GH1 genes encoded proteins containing 142-871 amino acids, and GH1 were widely distributed in secretory pathway, nucleus, cytoskeleton and so on. The GH1 expression levels from high to low were the immature stems, tender roots, young fruits, mature leaves, young leaves, apical buds, old leaves, and flowers. Most of the GH1 genes were expressed in the fresh leaves and when the leaf weight was reduced by 10 %, while CsGH1BG6, CsGH1BG7, and CsGH1BG26 were up-regulated at 20% to 60% weight loss, which is a key period for the GH1 genes to regulate white tea quality. Up-regulated GH1 genes play a positive role in the regulation of water-deficient stress and the formation of aroma during fresh tea leaf withering. Thus, they may be candidate genes for further research into the quality formation of the withering process. Identification of the GH1 gene family and expression analysis in different tissues and during the withering process laid the foundation for tea quality control.

参考文献/References:

1 Zeng LT, Naoharu W, Yang Z. Understanding the biosynthesis and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma [J]. Crit Rev Food Sci Nutr, 2018: 1-14
2 项丽慧, 林清霞, 余文权, 陈林, 王振康. 茶叶中糖苷类香气前体物质研究进展[J]. 茶叶学报, 2017, 58 (3): 133-138 [Xiang LH, Lin QX, Yu WQ, Chen L. Advances in research of glycosidically bound aroma compounds in tea [J]. Acta Tea Sin, 2017, 58 (3): 133-138]
3 严寒. 福鼎白茶中挥发性内酯类及萜类化合物的对映异构体研究[D]. 北京: 中国农业科学院, 2019 [Yan H. Study on the enantiomers of volatile lactones and terpenoids in fuding white tea [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019]
4 Hu CJ, Li D, Ma YX, Zhang W, Lin C, Zheng XQ, Liang YR, Lu JL. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment [J]. Food Chem, 2018, 269: 202-211
5 Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases [J]. PNAS, 1995, 92 (15): 7090-7094
6 Barrett T, Suresh CG, Tolley SP, Dodson EJ, Hughes MA. The crystal structure of a cyanogenic β-glucosidase from white clover, a family 1 glycosyl hydrolase [J]. Structure, 1995, 3 (9): 951-960
7 Leah R, Kigel J, Svendsen I, Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase [J]. J Biol Chem, 1995, 270 (26): 15789-15797
8 Zhou Y, Zeng LT, Gui JD, Liao Y, Li J, Tang J, Meng Q, Fang D, Yang Z. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis) [J]. Food Res Int, 2017, 96: 206-214
9 Gui JD, Fu XM, Zhou Y, Tsuyoshi K, Xin M, Rufang D, Xinlan X, Linyun Z, Fang D, Naoharu W. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? [J]. J Agric Food Chem, 2015, 63 (31): 6905-6914
10 苏振峰. GH1β-葡萄糖苷酶在拟南芥和水稻中的生物信息学及表达模式分析[D]. 泰安: 山东农业大学. 2014 [Su ZF. Bioinformation and expression patterns analysis of GH1 β-glucosidases in arabidopsis and rice [D]. Tai’an: Shandong Agricultural University, 2014]
11 Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Cairns JRK. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase [J]. BMC Plant Biol, 2006, 6 (1): 1-19
12 Wang D, Kurasawa E, Yamaguchi Y, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process [J]. J Agric Food Chem, 2001, 49 (4): 1900-1903
13 Guo W, Ogawa K, Yamauchi K, Watanabe N, Usui T, Luo S, Sakata K. Isolation and characterization of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves [J]. J Agric Chem Soc Jap, 1996, 60 (11): 1810-1814
14 Xu ZW, Escamilla-Trevi?o LL, Zeng LH, Lalgondar M, Bevan DR, Winkel BSJ, Mohamed A, Cheng CL, Shih MC, Poulton JE, Esen A. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1 [J]. Plant Mol Biol, 2004, 55 (3): 343-367
15 Wei CL, Yang H, Wang SB, Zhao J, Liu C, Gao LP, Xia EH, Lu Y, Tai YL, She GB, Sun J, Cao HS, Tong W, Gao Q, Li YY, Deng WW, Jiang XL, Wang WZ, Chen Q, Zhang SH, Li HJ, Wu JL, Wang P, Li PH, Shi CY, Zheng FY, Jian JB, Huang B, Shan D, Shi MM, Fang CB, Yue Y, Li FD, Li DX, Wei S, Han B, Jiang CJ, Yin Y, Xia T, Zhang ZZ, Bennetzen JL, Zhao SC, Wan XC. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115 (18): 1-8
16 Xia Eh, Zhang HB, Sheng J, Kui L, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, E Eichler E, Gao LZ. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis [J]. Mol Plant, 2017, 10 (6): 866-877
17 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870-1874
18 Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite [J]. Nucleic Acids Res, 2015, 43: 39-49
19 Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. TBtools - an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13 (8): 1-26
21 Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 2008, 5: 621-628
22 Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions [J]. Genome Biol, 2013, 14 (4): 1-13
23 王远, 高秋强, 辛秀娟, 鲍杰. β-葡萄糖苷酶基因和内切葡聚糖酶基因在枯草芽孢杆菌中的表达[J]. 应用与环境生物学报, 2013, 19 (6): 990-996 [Wang Y, Gao QQ, Xin XJ, Bao J. Expression of endoglucanase gene and β-glucosidase genes in Bacillus subtilis [J]. Chin J Appl Environ Biol, 2013, 19 (6): 990-996]
24 Han WW, Li ZS, Zheng QC, Sun CC. Toward a blueprint for β-primeverosidase from tea leaves structure/function properties: homology modeling study [J]. J Thero Comput Chem, 2006, 5 (1): 433-446
25 苗爱清, 江和源, 李家贤, 胡海涛, 何玉媚, 韩宝瑜. 黄棪原料香气与糖苷类香气前体的分布研究[J]. 茶叶科学, 2003, 23 (2): 159-162 [Miao AQ, Jiang HY, Li JX, Hu HT, He YM, Han BY. Studies on aroma composition of huangdan fresh shoots and distribution of its aroma precursor of glucoside [J]. J Tea Sci, 2003, 23 (2): 159-162]
26 Zeng LT, Zhou Y, Fu XM, Mei X, Cheng SH, Gui JD, Dong F, Tang JC, Ma SZ, Yang ZY. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma [J]. Food Chem, 2017, 237: 488
27 刘飞, 王云, 张厅, 唐晓波, 王小萍, 李春华. 红茶加工过程香气变化研究进展[J]. 茶叶科学, 2018, 38 (1): 9-19 [Liu F, Wang Y, Zhang T, Tang XB, Wang XP, Li CH. Review on aroma change during black tea processing [J]. J Tea Sci, 2018, 38 (1): 9-19]
28 张正竹, 宛晓春, 施兆鹏, 高丽萍. 鲜茶叶摊放过程中呼吸速率、β-葡萄糖苷酶活性、游离态香气和糖苷类香气前体含量的变化[J]. 植物生理学报, 2003, 39 (2): 134-136 [Zhang ZZ, Wan XC, Shi ZP, Gao LP. Variations of respiration rate, β-glucosidase activity, volatiles, and glycosidic aroma precursors during spreading fresh tea leaves [J]. Plant Physiol Commum, 2003, 39 (2): 134-136]
29 Wang Y, Zheng PC, Liu PP, Song XW, Guo F, Li YY, Ni DJ, Jiang CJ. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling [J]. Food Chem, 2019, 273 (30): 313-322
30 Su ZQ, ?abaj PP, Li S, Thierry-Mieg J, Thierry-Mieg D, Shi W, Wang C, Schroth GP, Setterquist RA, Thompson JF. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium [J]. Nat Biotechnol, 2014, 32 (9): 903-914

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[4]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[5]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[6]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[7]王海斌,陈晓婷,丁力,等.福建省安溪县茶园土壤酸化对茶树产量及品质的影响[J].应用与环境生物学报,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,et al..Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[8]岳川,曹红利,王赞,等.茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达[J].应用与环境生物学报,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
 YUE Chuan,et al..Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
[9]郑世仲,江胜滔,陈美霞,等.茶树Ankyrin基因启动子的克隆及其5′UTR内含子功能[J].应用与环境生物学报,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
 ZHENG Shizhong,JIANG Shengtao,et al.Isolation of the Ankyrin gene promoter from tea plant (Camellia sinensis L.) and a subsequent analysis of the function of its 5′UTR intron[J].Chinese Journal of Applied & Environmental Biology,2019,25(04):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
[10]曹红利,陆鲸冰,吴英杰,等.茶树7个褪黑素合成酶基因的鉴定及非生物胁迫响应[J].应用与环境生物学报,2020,26(05):1244.[doi: 10.19675/j.cnki.1006-687x.2019.10012]
 CAO Hongli,LU Jingbing,WU Yingjie & YUE Chuan.Isolation?and?expression?analysis?of?melatonin?biosynthesis genes in tea plant?in response to abiotic stress[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):1244.[doi: 10.19675/j.cnki.1006-687x.2019.10012]

更新日期/Last Update: 2020-08-25