|本期目录/Table of Contents|

[1]张雪,涂波,刘来雁,等.互营烃降解菌系的短链脂肪酸降解特性[J].应用与环境生物学报,2020,26(04):783-790.
 ZHANG Xue,TU Bo,et al.Degradation of volatile fatty acids by syntrophic alkane-degrading consortia[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):783-790.
点击复制

互营烃降解菌系的短链脂肪酸降解特性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
783-790
栏目:
工业与环境微生物功能研究专栏
出版日期:
2020-08-25

文章信息/Info

Title:
Degradation of volatile fatty acids by syntrophic alkane-degrading consortia
作者:
张雪涂波刘来雁曾婉秋承磊
1农业部沼气科学研究所 成都 610041 2农业部农村可再生能源开发利用重点实验室 成都 610041
Author(s):
ZHANG Xue1 2 TU Bo1 2 LIU Laiyan1 2 ZENG Wanqiu1 2 & CHENG Lei1 2?
1 Biogas Institute of Ministry of Agriculture, Chengdu 610041, China 2 Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
关键词:
微生物采油技术互营烃降解短链脂肪酸甲烷微生物群落
Keywords:
microbial enhanced oil recovery syntrophic alkane degradation volatile fatty acids methane microbial community
摘要:
为研究互营烃降解菌系的短链脂肪酸(VFAs)降解能力,并解析相关的功能菌群,以3种不同温度下生长的互营烃降解菌系SK、M82和Y15作为接种物,分别添加甲/乙/丙/丁酸钠进行传代培养,应用高通量测序技术分析细菌和古菌的16S rRNA基因多样性. 除M82不能代谢丁酸外,3个烃降解菌系都可以代谢甲/乙/丙/丁酸产甲烷. 添加VFAs富集培养后,3种互营烃降解菌系中的已知互营菌群的相对丰度提升. Tepidanaerobacter,Thermotoga和Thermosyntropha在SK细菌菌群中的丰度增加,Tepidanaerobacter在M82中的丰度增加, Syntrophomonas在Y15中的丰度增加;在古菌菌群中,Methanothermobacter,Methanosaeta和un_Thermoprotei在SK的丰度增加,Methanothermobacter和un_Thermoprotei在M82中的丰度增加, Methanosaeta、Methanobacterium、Methanosarcina和un_Euryarchaeota在Y15中的丰度增加. 本研究表明高、中、低温3种互营烃降解菌系SK、M82和Y15均具有互营代谢VFAs的能力,不同的互营VFAs降解体系中的功能微生物不同,结果可为今后开展油藏互营微生物分离工作提供良好材料、为进一步研究互营烃降解分子机理奠定基础. (图3 参50)
Abstract:
This study aimed to evaluate the degradation ability of volatile fatty acids (VFAs) by different syntrophic alkane-degrading consortia and to characterize the shift in microbial community structures. Three syntrophic alkane-degrading consortia enriched from oil fields, SK (55 ℃), M82 (35 ℃), and Y15 (25 ℃), were selected as inocula. Formate, acetate, propionate, and butyrate were selected as the substrates. Time courses of methane production and substrate consumption were measured, and the structure and shifts in the microbial communities before and after incubation were analyzed by high-throughput sequencing of the bacterial and archaeal 16S ribosomal RNA (rRNA) genes. All of the consortia utilized volatile fatty acids (formate, acetate, propionate, and butyrate) and produced methane, except for butyrate consumption by consortium M82. Members related to Tepidanaerobacter, Thermotoga, and Thermosyntropha in consortium SK, Tepidanaerobacter in consortium M82, and Syntrophomonas in consortium Y15 became the dominant bacterial phylotypes. Members of Methanothermobacter, Methanosaeta, and un_Thermoprotei in consortium SK, Methanothermobacter and un_Thermoprotei in consortium M82, and Methanosaeta, Methanobacterium, Methanosarcina, and un_Euryarchaeota in consortium Y15 became the predominant types in the archaeal domain. Three syntrophic alkane-degrading consortiums, SK, M82, and Y15, grew with different VFAs and produced methane, which harbors different syntrophic VFAs consortiums. This study highlights valuable sources for the isolation of syntrophic microorganisms.

参考文献/References:

1 Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F. Methane formation from long-chain alkanes by anaerobic microorganisms [J]. Nature, 1999, 401 (6750): 266-269
2 Bowler BFJ. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs [J]. Nature, 2008, 451 (7175): 176-180
3 承磊, 仇天雷, 邓宇. 油藏厌氧微生物研究进展 [J]. 应用与环境生物学报, 2006, 12 (5): 740-744 [Cheng L, Qiu TL, Deng Y. Recent advances in anaerobic microbiology of petroleum reservoirs [J]. ChinJ Appl Environ Biol, 2006, 12 (5): 740-744]
4 Mayumi D, Mochimaru H, Yoshioka H, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Takeuchi M, Kamagata Y. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high‐temperature petroleum reservoir of Yabase oil field (Japan) [J]. Environ Microbiol, 2011, 13 (8): 1995-2006
5 Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium [J]. Int J Syst Evol Microbiol, 2007, 57 (7): 1487-1492
6 Kendall MM, Liu Y, Boone DR. Butyrate- and propionate-degrading syntrophs from permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina butyrica gen. nov., sp. nov [J]. FEMS Microbiol Lett, 2006, 262 (1): 107-114
7 Westerholm M, Roos S, Schn RA. Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes [J]. Syst Appl Microbiol, 2011, 34 (4): 260-266
8 Dolfing J, Larter SR, Head IM. Thermodynamic constraints on methanogenic crude oil biodegradation [J]. ISME Journal, 2008, 2 (4): 442
9 Townsend GT, Prince RC, Suflita JM. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer [J]. Environ Sci Technol, 2003, 37 (22): 5213-5218.
10 Gieg LM, Duncan KE, Suflita JM. Bioenergy production via microbial conversion of residual oil to natural gas [J]. Appl Environ Microbiol, 2008, 74 (10): 3022-3029
11 Gray ND, Sherry A, Grant RJ, Rowan AK, Hubert CRJ, Callbeck CM, Aitken CM, Jones DM, Adams JJ, Larter SR. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes [J]. Environ Microbiol, 2011, 13 (11): 2957-2975
12 Siddique T, Penner T, Semple K, Foght JM. Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings [J]. Environ Sci Technol, 2011, 45(13): 5892-5899
13 Wang LY, Gao CX, Mbadinga SM, Lei Z, Liu JF, Gu JD, Mu BZ. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation [J]. Int Biodeter Biodegr, 2011, 65 (3): 444-450
14 Cheng L, Ding C, Li Q, He Q, Dai LR, Zhang H. DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation [J]. PLoS ONE, 2013, 8 (7): e66784
15 Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community [J]. ISME J, 2013, 8 (4): 757
16 Zengler K, Richnow HH, Rossell?? -Mora R, Michaelis W, Widdel F. Methane formation from long-chain alkanes by anaerobic microorganisms [J]. Nature, 1999, 401 (6750): 266-269
17 Tischer K, Kleinsteuber S, Schleinitz KM, Fetzer I, Spott O, Stange F, Lohse U, Franz J, Neumann F, Gerling S. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer [J]. Environ Microbiol, 2013, 15 (9): 2603-2615
18 Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B. Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures [J]. Environ Sci Technol, 2010, 44 (19): 7287-7294
19 Tan B, Nesb C, Foght J. Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions [J]. ISME J, 2014, 8 (12): 2353-2356
20 Lei C, Junpeng R, Qiang L, Hui Z, Yahai L. Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oilfield [J]. FEMS Microbiol Ecol, 2013, 83 (3): 757-766
21 Lei C, Qiao H, Chen D, LiRong D, Qiang L, Hui Z. Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium [J]. FEMS Microbiol Ecol, 2013, 85 (3): 568-577
22 Ding C, Ma T, Hu A, Dai L, He Q, Cheng L, Zhang H. Enrichment and characterization of a psychrotolerant consortium degrading crude oil alkanes under methanogenic conditions [J]. Microbiol Ecol, 2015, 70 (2): 433-444
23 Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons [J]. Curr Opin Biotechnol, 2001, 12 (3): 259-276
24 Bo T, Domene X, Minjie Y, Chaonan L, Shiheng Z, Yongping K, Yansu W, Xiangzhen L. Microbial diversity in Chinese temperate steppe: unveiling the most influential environmental drivers [J]. FEMS Microbiol Ecol, 2017, 93 (4): fix031
25 Tandishabo K, Takamizawa K. Isolation and characterization of a new Coprothermobacter proteolyticus strain from a thermophilic anaerobic digester [C]. Proceedings of the Woda, 2010
26 Rees GN, Patel BK, Grassia GS, Sheehy AJ. Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate [J]. Int J Syst Evol Microbiol, 1997, 47 (1): 150-154
27 de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum [J]. Int J Syst Evol Microbiol, 2005, 55 (4): 1697-1703
28 Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium [J]. Int J Syst Evol Microbiol, 2002, 52 (5): 1729-1735
29 Qiu YL, Sekiguchi Y, Hanada S, Imachi H, Tseng IC, Cheng SS, Ohashi A, Harada H, Kamagata Y. Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens [J]. Arch Microbiol, 2006, 185 (3): 172-182
30 Balk M, Weijma J, Stams AJM. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor [J]. Int J Syst Evol Microbiol, 2002, 52 (4): 1361-1368
31 Sekiguchi Y, Imachi H, Susilorukmi A, Muramatsu M, Ohashi A, Harada H, Hanada S, Kamagata Y. Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges [J]. Int J Syst Evol Microbiol, 2006, 56 (7): 1621-1629
32 Svetlitshnyi V, Rainey F, Wiegel J. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-Chain fatty acids in syntrophic coculture with a methanogenic archaeum [J]. Int J Syst Evol Microbiol, 1996, 46 (4): 1131-1137
33 Zhang F, Liu X, Dong X. Thermosyntropha tengcongensis sp. nov., a thermophilic bacterium that degrades long-chain fatty acids syntrophically [J]. Int J Syst Evol Microbiol, 2012, 62 (4): 759-763
34 Chen S, Liu X, Dong X. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors [J]. Int J Syst Evol Microbiol, 2005, 55 (3): 1319-1324
35 Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans, AL, De Vos WM, Stams AJM. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium [J]. Int J Syst Evol Microbiol, 1998, 48 (4): 1383-1387
36 Liu Y, Aldrich HC, Drake GR, Boone DR, Balkwill DL. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii [J]. Int J Syst Evol Microbiol, 1999, 49 (2): 545-556
37 Wallrabenstein C, Hauschild E, Schink B. Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate [J]. Arch Microbiol, 1995, 164 (5): 346-352
38 Schink B, Pfennig N. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium [J]. Arch Microbiol, 1982, 133 (3): 195-201
39 Sylvia S, Andreas B, Bernhard S. Degradation of hydroxyhydro-quinone by the strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov.[J]. Arch Microbiol, 1991, 155 (5): 511-516
40 Stams AJM, Hansen TA. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria [J]. Arch Microbiol, 1984, 137 (4): 329-337
41 Hatamoto M, Imachi H, Fukayo S, Ohashi A, Harada H. Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge [J]. Int J Syst Evol Microbiol, 2007, 57 (9): 2137-2142
42 Lorowitz WH, Zhao H, Bryant MP. Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species [J]. Int J Syst Evol Microbiol, 1989, 39 (2): 122-126
43 Mcinerney MJ, Bryant MP, Hespell RB, Costerton JW. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium [J]. Appl Environ Microb, 1981, 41 (4): 1029-1039
44 Roy F, Samain E, Dubourguier HC, Albagnac G. Synthropho-monas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids [J]. Arch Microbiol, 1986, 145 (2): 142-147
45 Sousa DZ, Smidt H, Alves MM, Stams AJM. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum [J]. Int J Syst Evol Microbiol, 2007, 57 (3): 609-615
46 Wu C, Dong X, Liu X. Syntrophomonas wolfei subsp. methylbut-yratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov [J]. Syst Appl Microbiol, 2007, 30 (5): 376-380
47 Wu C, Liu X, Dong X. Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov [J]. Int J Syst Evol Microbiol, 2006, 56 (10): 2331-2335
48 Wu C, Liu X, Dong X. Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens [J]. Syst Appl Microbiol, 2006, 29 (6): 457-462
49 Zhang C, Liu X, Dong X. Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens [J]. Int J Syst Evol Microbiol, 2004, 54 (3): 969-973
50 Zhang C, Liu X, Dong X. Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids [J]. Int J Syst Evol Microbiolobiol, 2005, 55(2): 799-803

更新日期/Last Update: 2020-08-25