|本期目录/Table of Contents|

[1]王香莲,高桂青,刘博,等.鄱阳湖流域浮萍种质资源分布及其对水环境因子的响应[J].应用与环境生物学报,2020,26(04):1000-1009.
 WANG Xianglian,GAO Guiqing,et al.Distribution of duckweed germplasm resources and its response to water environment factors in Poyang Lake basin[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):1000-1009.
点击复制

鄱阳湖流域浮萍种质资源分布及其对水环境因子的响应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
1000-1009
栏目:
研究论文
出版日期:
2020-08-25

文章信息/Info

Title:
Distribution of duckweed germplasm resources and its response to water environment factors in Poyang Lake basin
作者:
王香莲高桂青刘博龚之涵罗瑾王锴徐晨晨卢天宇胡万聪吴代赦黄庭
1南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室 南昌 330031 2南昌工程学院土木与建筑工程学院 南昌 330099 3河北工程大学能源与环境工程学院 邯郸 056038
Author(s):
WANG Xianglian1 2 GAO Guiqing2 LIU Bo2 GONG Zhihang2 LUO Jin3 WANG Kai2 XU Chenchen2 LU Tianyu2 HU Wanchong2 WU Daishe1? & HUANG Ting1?
1 School of Resource Environment and Chemical Engineering; Key Laboratory of Poyang Lake Environment and Resources of Utilization Ministry of Education, Nanchang University, Nanchang 330031, China2 School of Civil and Architecture Engineering, Nanchang Institute of Technology, Nanchang 330099, China3 School of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
关键词:
浮萍水环境重金属RDA分析
Keywords:
duckweed water environment nitrogen phosphorus heavy metal RDA analysis
摘要:
为全面了解鄱阳湖流域浮萍种属资源分布及其生长水环境,对流域内浮萍资源开展调查并测定生长水体的水质. 结果显示,鄱阳湖流域采集到的浮萍共4属5种,分别为青萍(Lemna minor)、稀脉浮萍(Lemna perpusilla)、紫背浮萍(Spirodela polyrrhiza)、少根紫萍(Landoltia punctata)、芜萍(Wolffia arrhiza)、青萍和紫背浮萍为该地区的优势种. 青萍生长水体的pH范围最广(5.5-9.43),其他浮萍生长水体呈弱酸性. 青萍生长水体中的氨氮(NH3-N)、硝态氮(NO3-N)、总氮(TN)、化学需氧量(COD)浓度范围较其他4种浮萍更为广泛,分别为0.18-4.25 mg/L、0.027-3.27 mg/L、0.38-13.28 mg/L、16.16-614.72 mg/L,少根紫萍生长水体的总磷(TP)浓度范围最广,为0.06-2.68 mg/L. 从重金属含量来看,青萍生长水体Cu、Pb、Zn、Co含量范围最广,少根紫萍对Cd、紫背浮萍对Mn的适应能力表现出优势. 从自然状态下富集效果来看,青萍对Zn、紫背浮萍对Cr、少根紫萍对Mn的富集能力强. 青萍和紫背浮萍对Pb富集效果好于少根紫萍. RDA分析表明,少根紫萍的分布主要受TN、TP、NH3-N的影响,紫背浮萍主要受Mn的影响,青萍主要受NO3-N的影响. 稀脉浮萍和芜萍分别受Cd、Cr的影响. 不同浮萍种属的水环境差异较大,在修复富营养化水体时,可利用当地优势品种组合以达到最佳的去除效果. 根据浮萍对重金属耐受能力、富集效果的不同可筛选出对特定重金属耐性好且富集能力强的品种. 本研究对利用浮萍品种修复不同污染的水体具有一定的指导意义. (图4 表5 参40)
Abstract:
The duckweed resources growing in the Poyang Lake basin were investigated to assess the ecological means of restoring the problematic water environment. The measured water environmental factors included the pH value, chemical oxygen demand (COD), NH3-N (ammonium nitrogen), NO3-N (nitrate nitrogen), TN (total nitrogen), TP (total phosphorus), and heavy metal content. There were 5 species of duckweed in 4 generations collected from Poyang Lake basin, Lemna minor, Lemna perpusilla, Spirodela polyrrhiza, Landoltia punctata, and Wolffia arrhiza. Lemna minor and Spirodela polyrrhiza were the dominant species in the region, and Lemna minor had the widest range of pH adaptability (5.5 to 9.43) in the water environment (the other duckweeds tended toward weakly acidic). The concentration ranges of NH3-N, NO3-N, TN, and COD in the water where Lemna minor grew was wider than for the other four types, which were 0.18-4.25 mg/L, 0.027-3.27 mg/L, 0.38-13.28 mg/L, and 16.16-614.72 mg/L, respectively. The broadest TP range was in the water of Landoltia punctata (0.06 - 2.68 mg/L). Lemna minor had a wider tolerance to heavy metals, copper (Cu), lead (Pb), zinc (Zn), and cobalt (Co), and it showed a predominance of adaptability for Landoltia punctate versus cadmium (Cd) and Spirodela polyrrhiza versus manganese (Mn). Lemna minor had the best enrichment effect to Zn, as did Spirodela polyrrhiza to chromium (Cr) and Landoltia punctata to Mn. Lemna minor and Spirodela polyrrhiza had better enrichment effects to Pb than Landoltia punctata. Redundancy analysis (RDA) showed that the distribution of Landoltia punctata was affected by the contents of TN, TP, and NH3-N, while Spirodela polyrrhiza was affected by Mn, and Lemna minor was affected by NO3-N. Likewise, Lemna perpusilla and Wolffia arrhiza were affected by Cd and Cr, respectively. These results show that the water environments of duckweed growth differ. When restoring eutrophic environments, we must choose the appropriate local varieties to achieve optimal effects. The dominant varieties with good tolerance and strong biomass accumulation ability to certain heavy metals should also be screened. This study provides guidance for the rehabilitation of polluted waters with suitable duckweed species.

参考文献/References:

1 Les DH, Crawford DJ, Landolt E, Gabel JD, Rebecca T, Kimball S. Phylogeny and systematics of Lemnaceae, the duckweed family [J]. Syst Bot, 2002, 27 (2): 221-241
2 于昌江, 朱明, 马玉彬, 于丽, 周功克. 新型能源植物浮萍的研究进展[J]. 生命科学, 2014 (5): 458-464 [Yu CJ, Zhu M, Ma YB, Yu L, Zhou GK. Research progress of new energy plant duckweed [J]. Life Sci, 2014 (5): 458-464]
3 Cheng JJ, Stomp AM. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed [J]. Clean-Soil Air Water, 2009, 37 (1): 17- 26
4 Minowa T, Murakami M, Dote Y, Ogi T, Yokoyama SY. Oil production from garbage by thermochemical liquefaction [J]. Biomass Bioenerg, 1995, 8 (2): 117-120
5 Chen Q, Jin YL, Zhang GH. Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment [J]. Energies, 2012, 5 (8) : 3019 -3032
6 Dalu JM, Ndamba J. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe) [J]. Phys Chem Earth, 2003, 28 (20): 1147-1160
7 Costa RHR, Tonon G, Mohedano RA, Pelissari C, Belli FP. Does Duckweed ponds used for wastewater treatment emit or sequester greenhouse gases (GHG)? [J]. Sci Total Environ, 2019, 15 (691): 1043-1050
8 Miretzky P, Saralegui A, Cirelli A F. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires,Argentina) [J]. Chemosphere, 2004, 7 (8): 997-1005
9 鲍姝, 方扬, 靳艳玲, 赵永贵, 赵海. 污水氮磷浓度对云南本地浮萍生长及氮磷去除的影响[J]. 应用与环境生物学报, 2014, 20 (1): 56-62 [Bao S, Fang Y, Jin YL, Zhao YG, Zhao H. Influence of ammonium and phosphate concentration of sewage on the growth, nitrogen and phosphorus removal of duckweed in Yuna [J]. Chin J Appl Environ Biol, 2014, 20 (1): 56-62]
10 Zhao Z, Shi HJ, Liu Y, Zhao H, Su HF, Wang ML, Zhao Y. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater [J]. Bioresour Technol, 2014, 167C (3): 383-389
11 Kanoun-Boulé M, Vicente JA, Nabais C, Prasad MNV, Freitas H. Ecophysiologi caltolerance of duckweeds exposed to copper [J]. Aquat Toxicol, 2009, 91 (1): 1-9
12 Tang J, Chen C, Chen L, Daroch M, Cui Y. Effects of pH, initial Pb2+ concentration and polyculture on lead remediation by three duckweed species [J]. Environ Sci Pollut Res, 2017, 24 (30): 1-8
13 唐利萍, 方扬, 靳艳玲, 陈夏媛, 赵海. 重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J]. 应用与环境生物学报, 2015, 21 (5): 830-836 [Tang LP, Fang Y, Jin YL, Chen XY, Zhao H. Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water [J]. Chin J Appl Environ Biol, 2015, 21 (5): 830-836]
14 Yang JJ, Li GJ, Bishopp A, Heenatigala PPM, Hu SQ, Chen Y, Wu ZG, Kumar SJ, Duan PF, Yao LG, Hou HW. A comparison of growth on mercuric chloride for three Lemnaceae species reveals differences in growth dynamics that effect their suitability for use in either monitoring or remediating ecosystems contaminated with mercury [J]. Front Chem, 2018, 6 (112): 1-12
15 Bokhari SH, Mahmood-Ul-Hassan M, Ahmad M. Phytoextraction of Ni, Pb and Cd by duckweeds [J]. Int J Phytoremediat, 2019, 21 (8): 799-806
16 吴雪飞, 刘璐嘉, 马晗, 刘杨, 周明耀, 钱晓晴. 江苏省夏季浮萍种类及其生长水环境调查[J]. 生态与农村环境学报, 2012, 28 (5): 554-558 [Wu XF, Liu LJ, Ma H, Liu Y, Zhou MY, Qian XQ. Investigation on the species of duckweed and its growing water environment in summer in jiangsu province [J]. J Ecol Rural Environ, 2012, 28 (5): 554-558]
17 许亚良, 张家明. 海南岛浮萍群落的分布及影响群落结构的因素[J]. 热带生物学报, 2015, 6 (3): 304-309 [Xu YL, Zhang JM. Distribution of duckweed community and the environmental factors that affect the community structure [J]. J Opic Biol, 2015, 6 (3): 304-309]
18 陈蕾, 成家杨, 谢靖, 唐杰. 浮萍分布与水环境因子的相关性研究[J]. 江苏农业科学, 2018, 46 (9): 305-310 [Chen L, Cheng JY, Xie J, Tang J. Study on the correlation between the distribution of duckweed and the water environment factors [J]. Jiangsu Agric Sci, 2018, 46 (9): 297-302
19 杜冰雪, 徐力刚, 张杰, 范宏翔, 程俊翔, 黄涛, 姜加虎. 鄱阳湖富营养化时空变化特征及其与水位的关系[J]. 环境科学研究, 2019, 32 (5): 77-83 [Du BX, Xu JG, Zhang J, Fan HX, Cheng JX, Huang T, Jiang JH. The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level [J]. Environ Sci Res, 2019, 32 (5): 77-83]
20 杨期勇, 曾明, 谢琪, 程鹏飞, 邱秀文, 黄亮, 赵军凯. 鄱阳湖北部湖区沉积物重金属分布及其潜在生态风险评价[J]. 生态环境学报, 2018, 27 (3): 556-564 [Yang QY, Zeng M, Xie Q, Cheng PF, Qiu XW, Huang L, Zhao JK. The distribution of heavy metals and potential ecological risk in the Northern Poyang Lake [J]. Ecol Environ Sci, 2018, 27 (3): 556-564]
21 张建, 黄小兰, 张婷, 郭秋平. 鄱阳湖河湖交错带重金属污染对微生物群落与多样性的影响[J]. 2018, 30 (3) : 640-649 [Zhang J, Huang XL, Zhang T, Guo QP. Effects of heavy metal pollution on microbial community and diversity in lake-river ecotone of Lake Poyang [J]. J Lake Sci, 2018, 30 (3): 640-649]
22 姬志军, 张连明. 鄱阳湖流域降雨量及降雨侵蚀力时空分布特征[J]. 人民黄河, 2019, 41 (6): 81-84 [Ji ZJ, Zhang LM.Spatial-Temporal variation ofdistribution of rainfall erosivity in the Poyang Lake Basin [J]. Yellow River, 2019, 41 (6): 81-84]
23 周建, 李胜男, 王秀娟, 孔繁翔, 史小丽. 丰水期鄱阳湖超微型浮游植物空间分布特征及其影响因子[J]. 湖泊科学, 2016, 28 (3): 537-544 [Zhou J, li SN, Wang XJ, Kong FX, Shi XL.Spatial distribution characteristics of picophytoplankton and its impact factors during wetseason in Lake Poyang [J]. J Lake Sci, 2016, 28 (3): 537-544]
24 Zhao Z, Shi H, Liu C, Kang XJ, Chen LC, Liang XF, Lei J. Duckweed diversity decreases heavy metal toxicity by altering the metabolic function of associated microbial communities [J]. Chemosphere, 2018, 203: 76-82
25 笪文怡, 朱广伟, 吴志旭, 黎云祥, 许海, 朱梦圆, 兰佳, 郑文婷, 张运林, 秦伯强. 2002-2017 年千岛湖浮游植物群落结构变化及其影响因素[J]. 湖泊科学, 2019, 31 (5): 1320-1333 [Da WY, Zhu GW, Wu ZX, Li YX, Xu H, Zhu MY, Lan J, Zheng WT, Zhang YL,Qin BQ. Long-term variation of phytoplankton community and driving factors in Qiandaohu Reservoir, southeast China [J]. J Lake Sci, 2019, 31 (5): 1320-1333]
26 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978 [Editorial Committee of Chinese Flora. Chinese Academy of Sciences. Flora of China [M]. Beijing: Science Publishing House, 1978]
27 田志强, 张树仁. 中国湿地高等植物图志[M]. 北京: 中国环境科学出版社, 2012 [Tian ZQ, Zhang SL. China Wetland Higher Plants Flora [M]. Beijing: China Environmental Science Press, 2012]
28 官少飞, 张天火. 江西水生高等植物[M]. 上海: 上海科学技术出版社, 1989 [Guan SF, Zhang TH. Aquatic higher Plants of Jiangxi [M]. Shanghai: Science and Technology Press of Shanghai, 1989]
29 Chong YX, Hu HY, Qian Y. Effect of inorganic nitrogen compounds and pH on the growth of duckweed [J]. Environ Sci, 2003, 24 (4): 35-40
30 李阳, 成家杨, 钟钰, 唐 杰. 浮萍多样性对富营养化水体净化效果的影响[J]. 南方农业学报, 2017, 48 (2): 259-265 [Li Y, Cheng JY, Zhong Y, Tang J. Effects of duckweed diversity on purifying eutrophic water [J]. J S Agric, 2017, 48 (2): 259-265]
31 Zirschky J, Reed SC. The use of duckweed for wastewater treatment [J]. Water Pollut Control Fed, 1988, 60 (7): 1253-1258
32 熊正琴, 邢光熹, 沈光裕, 孙德玲. 太湖地区湖、河和井水中氮污染状况的研究[J]. 农村生态环境, 2002, 18 (2): 29-33 [Xiong ZQ, Xing GX, Shen GY, Sun DL. Study on nitrogen pollution in lake, river and well water in taihu lake area [J]. Rural Ecol Environ, 2002, 18 (2): 29-33]
33 雷钧镒, 李猛, 马旭洲, 王武. 青萍对富营养化水体氮、磷的去除效果[J]. 江苏农业科学, 2014, 42 (1): 325-328 [Lei JY, Li M, Ma XZ, Wang W. Removal effects of Lemna minor on nitrogen and phosphorus in eutrophic water bodies [J]. Jiangsu Agric Sci, 2014, 42 (1): 325-328]
34 蔡树美, 刘文桃, 张震, 柏彦超, 钱晓晴. 不同品种浮萍磷素吸收动力学特征[J]. 生态与农村环境学报, 2011, 27 (2): 48-52 [Cai SM, Liu WT, Zhang Z, Bai YC, Qian XQ. Characteristics of phosphorus absorption kinetics of different species of duckweeds [J]. Ecol Rural Environ, 2011, 27 (2): 48-52 ]
35 Chen GK, Fang Y, Huang J, Zhao YG , Li Q, Lai F, Xu YL, Tian XP, He KZ, Jin YL, Tan Li, Zhao H. Duckweed systems for eutrophic water purification through converting wastewater nutrients to high-starch biomass: comparative uation of three different genera (Spirodela polyrhiza, Lemna minor and Landoltia punctata) in monoculture or polyculture [J]. RSC Adv, 2018, 8 (32): 17927-17937
36 张飞, 唐杰, 马炯, 成家杨. 太湖流域浮萍种质资源及其生长水环境调查[J]. 江苏农业科学, 2016, 44 (1): 336-340 [Zhang F, Tang J, Ma J, Cheng JY. Investigation of duckweed germplasm resources and growth water environment in Taihu Lake Basin [J]. Jiangsu Agric Sci, 2016, 44 (1): 336-340]
37 Brune A, Urbach W, Dietz KJ. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance [J]. Plant Cell Environ, 2006, 17 (2): 153-162
38 李菲菲. 重金属元素铅(Pb)和镉(Cd)对浮水植物紫背浮萍(Spirodela polyrrhiza)的毒理学效应研究[D]. 南京: 南京师范大学, 2016 [Li FF. The tioxicological effect of lead (Pb) and cadmium (Cd) on the floating plant Spirodela polyrrhiza [D]. Nanjing: Nanjing Normal University, 2016]
39 李天煜.稀脉萍(Lemna aequinoctialis)和紫萍(Spirodela polyrrhiza)的重金属生态毒理学研究[D]. 武汉: 武汉大学, 2003 [li TY. Ecotoxicology of heavy metals in Lemna aequinoctialis and Spirodela polyrrhiza [D]. Wuhan: Wuhan University, 2013]
40 Baker AJM, Brooks RR, Pease AJ, Malaisse F. Studies on copper and cobalt tolerance in three closey related taxa within the genus Silence L. (Caryophyllaceae) from Zaire. Plant Soil, 1983, 73: 377-385

相似文献/References:

[1]白晓慧,张晓红,万紫微,等.水环境中隐孢子虫和贾第鞭毛虫检测方法研究[J].应用与环境生物学报,2007,13(05):722.
 BAI Xiaohui,et al..Detection Method of Cryptosporidium and Giardia in Water Environment[J].Chinese Journal of Applied & Environmental Biology,2007,13(04):722.
[2]陈兰钗,方扬,靳艳玲,等.浮萍(Lemna aequinoctialis)干粉对Pb2+的吸附[J].应用与环境生物学报,2013,19(06):1046.[doi:10.3724/SP.J.1145.2013.01046]
 CHEN Lanchai,FANG Yang,JIN Yanling,et al.Biosorption of Pb2+ by Dried Powder of Duckweed (Lemna aequinoctialis)[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):1046.[doi:10.3724/SP.J.1145.2013.01046]
[3]鲍姝,方扬,靳艳玲,等.污水氮磷浓度对云南本地浮萍生长及氮磷去除的影响[J].应用与环境生物学报,2014,20(01):56.[doi:10.3724/SP.J.1145.2014.00056]
 BAO Shu,FANG Yang,JIN Yanling,et al.Influence of ammonium and phosphate concentration of sewage on the growth, nitrogen and phosphorus removal of duckweed in Yunan[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):56.[doi:10.3724/SP.J.1145.2014.00056]
[4]张浩,方扬,靳艳玲,等.耐高氨氮浮萍的筛选及优势品种的生长特性[J].应用与环境生物学报,2014,20(01):63.[doi:10.3724/SP.J.1145.2014.00063]
 ZHANG Hao,FANG Yang,JIN Yanling,et al.Screening for high ammonia tolerant duckweed and growth characteristics of dominant species[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):63.[doi:10.3724/SP.J.1145.2014.00063]
[5]谢天艳,何开泽,赵海,等.4种浮萍提取物的抗菌活性和黄酮含量[J].应用与环境生物学报,2014,20(02):238.[doi:10.3724/SP.J.1145.2014.00238]
 XIE Tianyan,HE Kaize,ZHAO Hai,et al.Antimicrobial activities and flavonoid contents of the extracts from four strains of duckweed[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):238.[doi:10.3724/SP.J.1145.2014.00238]
[6]孙蛟龙,方扬,靳艳玲,等.浮萍转录组数据SSR位点的生物信息学分析[J].应用与环境生物学报,2015,21(03):401.[doi:10.3724/SP.J.1145.2014.04027]
 SUN Jiaolong,FANG Yang,JIN Yanling,et al.Bioinformatic analysis on SSR information in duckweed transcriptome[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):401.[doi:10.3724/SP.J.1145.2014.04027]
[7]唐利萍,方扬,靳艳玲,等.重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J].应用与环境生物学报,2015,21(05):830.[doi:10.3724/SP.J.1145.2015.04023]
 TANG Liping,FANG Yang,JIN Yanling,et al.Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):830.[doi:10.3724/SP.J.1145.2015.04023]
[8]陈 勇,张 敏** 渠晓东 王佰梅 朱龙基.潘大水库水环境时空格局演变动态[J].应用与环境生物学报,2016,22(06):1082.[doi:10.3724/SP.J.1145.2016.01012]
 CHEN Yong,ZHANG Min**,et al.The spatial-temporal pattern dynamics of the water environment in Panjiakou–Daheiting Reservoir[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):1082.[doi:10.3724/SP.J.1145.2016.01012]
[9]丁彦强,方扬,靳艳玲,等.基于叶绿体基因组的浮萍亚科系统进化[J].应用与环境生物学报,2017,23(02):215.[doi:10.3724/SP.J.1145.2016.04036]
 DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):215.[doi:10.3724/SP.J.1145.2016.04036]
[10]赖烦,靳艳玲,方扬,等.浮萍培养基的降黏及其发酵产乳酸[J].应用与环境生物学报,2020,26(04):1010.
 LAI Fan,,et al.Viscosity reduction of duckweed medium and fermentation to produce lactic acid[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):1010.

更新日期/Last Update: 2020-08-25