|本期目录/Table of Contents|

[1]何丹,张尔翼,余林鹏,等.[综 述] 微生物甲烷厌氧氧化耦合金属还原研究进展[J].应用与环境生物学报,2020,26(04):844-856.
 HE Dan,ZHANG Eryi,YU Linpeng? & ZHOU Shungui.Advances in the anaerobic microbial oxidation of methane that is coupled with metal reduction[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):844-856.
点击复制

[综 述] 微生物甲烷厌氧氧化耦合金属还原研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年04期
页码:
844-856
栏目:
工业与环境微生物功能研究专栏
出版日期:
2020-08-25

文章信息/Info

Title:
Advances in the anaerobic microbial oxidation of methane that is coupled with metal reduction
作者:
何丹张尔翼余林鹏周顺桂
福建农林大学资源与环境学院 福州 350002
Author(s):
HE Dan ZHANG Eryi YU Linpeng? & ZHOU Shungui
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
厌氧甲烷氧化金属还原电子传递机制影响因素
Keywords:
anaerobic oxidation of methane metal reduction electron transfer mechanism influencing factor
摘要:
甲烷是仅次于二氧化碳的重要温室气体. 微生物介导的厌氧甲烷氧化(anaerobic?oxidation?of?methane,AOM)是厌氧环境甲烷减排的重要途径,对缓解全球温室效应具有重要意义. AOM既可耦合硫酸盐、硝酸盐、亚硝酸盐等可溶性电子受体的还原,又能耦合金属氧化物等不溶性固体的还原. 本文系统综述了金属还原型甲烷厌氧氧化(metal ion-dependent anaerobic oxidation of methane,M-AOM)的发现、所涉及微生物及其代谢途径、电子传递过程、环境影响因素等. AOM产生的电子可通过细胞直接接触、微生物纳米导线、金属螯合物、氧化还原电子穿梭体4种途径传递至金属离子或氧化物. 微生物介导的金属还原,既包括厌氧甲烷营养古菌(anaerobic methanotrophic archaea,ANME)单独负责M-AOM的整个过程;又包括微生物的互营合作,即首先ANME氧化甲烷,并将产生的电子直接传递至互营微生物,接受ANME的电子来还原金属氧化物. 鉴于目前没有成功分离出ANME的单一菌株,未来对M-AOM的研究重点将集中在深入解析M-AOM电子传递机制及其生态分布和对甲烷汇的全球贡献上. (图5 表1 参129)
Abstract:
Methane is the second most important greenhouse gas after CO2. In addition, tge microbial-mediated anaerobic oxidation of methane (AOM) is a vital pathway for reducing methane emission in anaerobic environments, which is of significance for mitigating the global greenhouse effect. AOM can not only be coupled with the reduction of soluble electron acceptors, such as sulfate, nitrate, and nitrite, but also be coupled with the reduction of insoluble solids, such as metal oxides. This work has systematically reviewed the findings of metal ion-dependent anaerobic methane oxidations (M-AOM), with the microorganisms, metabolic pathways, electron transfer process, and environmental factors therein. The electrons produced by AOM can be transferred to the metal ion or oxides via direct cell contact, microbial nanowires, metal chelates, or redox electron shuttles, where M-AOM can be catalyzed by anaerobic?oxidation?of?methane (ANME) alone or by a syntrophic cooperative consortia. Firstly, the ANME oxidizes methane, then the electrons are directly transferred to partner microbes, which accept the electrons from the ANME to reduce the metal oxides. Since no pure strain of ANME has been successfully isolated, future research should focus on the elucidation of the M-AOM mechanisms as well as their ecological distribution and global contribution to the methane sink.

参考文献/References:

1 Ebner R, Ellis S, Golunski S. Deactivation and durability of the catalyst for HotSpot natural gas processing [R]. United Kindom: Johnson Matthey Technology Centre, 2000
2 Pen MA, Gomez JP, Fierro JLG. New catalytic routes for syngas and hydrogen production [J]. Appl Catal A Gen, 1996, 144 (1-2): 7-57
3 Singleton AH. Advances make gas-to-liquids process competitive for remote locations [J]. Oil Gas J, 1997, 95 (31): 68
4 Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS. Anaerobic oxidation of methane: Mechanisms, Bioenergetics, and the Ecology of associated microorganisms [J]. Environ Sci Technol, 2008, 42 (18): 6791-6799
5 Cicerone RJ, Oremland RS. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochem Cy, 1988, 2 (4): 299-327
6 Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J, Peyret P, Fonty G, Lehours A. Production and consumption of methane in freshwater lake ecosystems [J]. Res Microbiol, 2011, 162 (9): 832-847
7 Rice DD. Biogenic gas: Controls, habitats, and resource potential [J]. US Geol Survey Profess Paper, 1993, 1570: 583-606
8 Ehhat DH, Schmidt U. Sources and sink of atmospheric methane [J]. Pure Appl Geophys, 1978, 116: 452-464
9 Han B, Su T, Li X, Xing X. Research progresses of methanotrophs and methane monooxygenases [J]. Chin J Biotechnol, 2008, 24 (9): 1511-1519
10 Conrad R. The global methane cycle: Recent advances in understanding the microbial processes involved [J]. Env Microbiol Rep, 2010, 1 (5): 285-292
11 Reeburgh WS. Methane consumption in Cariaco Trench waters and sediments [J]. Earth Planet Sci Lett, 1976, 28 (3): 337-344
12 Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398 (6730): 802-805
13 Murase J, Kimura M. Methane production and its fate in paddy fields VII. Electron acceptors responsible for anaerobic methane oxidation [J]. Soil Sci Plant Nutr, 1994, 40 (4): 647-654
14 Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W. Geochemical evidence for iron-mediated anaerobic oxidation of methane [J]. Limnol Oceanogr, 2011, 56 (4): 1536-1544
15 Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351: 703-707
16 Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. PNAS, 2016, 113: 12792-12796
17 Alain K, Holler T, Musat F, Elvert M, Treude T, Krüger M. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania [J]. Environ Microbiol, 2006, 8 (4):574-590
18 Grossman EL, Cifuentes LA, Cozzarelli IM. Anaerobic methane oxidation in a landfill-leachate plume [J]. Environ Sci Technol, 2002, 36 (11): 2436-2442
19 Eller G, Kanel L, Kruger M .Cooccurrence of aerobic and anaerobic methane oxidation in the water column of lake Plusssee [J]. Appl Environ Microb, 2005, 71 (12): 8925-8928
20 Miyashita A, Mochimaru H, Kazama H, Ohashi A, Yamaguchi T, Nunoura T, Horikoshi K, Takai K, Imachi H. Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs) [J]. FEMS Microbiol Lett, 2009, 297 (1): 31-37
21 Smemo KA, Yavitt JB. Evidence for anaerobic CH4 oxidation in freshwater peatlands [J]. Geomicrobiol, 2007, 24 (7): 583-597
22 Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Bo Jergensen B, Witte U, Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407 (6804): 623-626
23 Hoehler TM, Alperin MJ, Albert DB, Martens CS. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium [J]. Global Biogeochem Cy, 1994, 8 (4): 451-463
24 Milucka J, Ferdelman TG, Polerecky L, Franzke D,Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM. Zero-valent sulphur is a key intermediate in marine methane oxidation [J]. Nature, 2012, 491: 541-546
25 Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VH. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps [J]. PNAS, 2014, 111 (40): E4139-47
26 Raghoebarsing AA, Pol A, Van De PKT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, Op Den Camp HJM, Jetten MSM, Strous M. A microbial consortium couples anaerobic methane oxidation to denitrification [J]. Nature, 2006, 440 (7086): 918-921
27 Hansen LB, Finster K, Fossing H, Iversen N. Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions [J]. Aquat Microb Ecol, 1998, 14: 195-204
28 Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chem Geol, 2004, 205: 219-238
29 Niemann H, Duarte J, Hensen C, Omoregie E, Magalh?es VH, Elvert M, Pinheiro LM, Kopf A, Boetius A. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz [J]. Geochim Cosmochim Acta, 2006, 70: 5336-5355
30 Parkes RJ, Cragg BA, Banning N, Brock F, Webster G, Fry JC, Hornibrook E, Pancost RD, Kelly S, Knab N, J?rgensen BB, Rinna J, Weightman AJ. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark) [J]. Environ Microbiol, 2007, 9: 1146-1161
31 Maignien L, Parkes RJ, Cragg B, Niemann H, Knittel K, Coulon S, Akhmetzhanov A, Boon N. Anaerobic oxidation of methane in hypersaline cold seep sediments [J]. FEMS Microbiol Ecol, 2013, 83: 214-231
32 Segarra KEA, Comerford C, Slaughter J, Joye SB. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments [J]. Geochim Cosmochim Acta, 2013, 115: 15-30
33 Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325: 184-187
34 Beal EJ, Claire MW, House CH. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels [J]. Geobiol, 2011, 9: 131-139
35 Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction [J]. Environ Microbiol, 2012, 14: 2726-2740
36 Treude T, Krause S, Maltby J, Dale AW, Coffin R, Hamdan LJ. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: implications for deep sulfur cycling [J]. Geochim Cosmochim Acta, 2014, 144: 217-237
37 Chiara Cassarini. Anaerobic oxidation of methane coupled to the reduction of different sulfur compounds in bioreactors [D]. Université Paris-Est, 2018
38 Luo JH, Chen H, Hu S, Cai C, Yuan Z, Guo J. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm [J]. Environ Sci Technol, 2018 (7): 4006-4012
39 Bai Y, Wang X, Wu J, Lu Y, Fu L, Zhang F, Lau T, Zeng RJ. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d [J]. Water Res, 2019, 164: 114935
40 Hamad B. Studies on the biotransformation of chromium (VI) by methane oxidising bacteria [D]. Sheffield: Sheffield Hallam University, 2009
41 Fu L, Li SW, Ding Z, Ding J, Lu Y, Zeng RJ. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II) [J]. Water Res, 2016, 88: 808-815
42 Lai C, Zhong L, Zhang Y, Chen J, Wen L, Shi L, Sun Y, Ma F, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao H. Bioreduction of chromate in a methane-based membrane biofilm reactor [J]. Environ Sci Technol, 2016, 50 (11): 5832-5839
43 Zhong L, Lai C, Shi L, Wang K, Dai Y, Liu Y, Ma F, Rittmann BE, Zheng P, Zhao H. Nitrate effects on chromate reduction in a methane-based biofilm [J]. Water Res, 2017, 115: 130-137
44 Lü P, Zhong L, Dong Q, Yang S, Shen W, Zhu Q, Lai C, Luo A, Tang Y, Zhao H. The effect of electron competition on chromate reduction using methane as electron donor [J]. Environ Sci Pollut Res, 2018, 25 (7): 6609-6618
45 Oni OE, Friedrich MW. Metal oxide reduction linked to anaerobic methane oxidation [J]. Trends in Microbiol, 2017, 25 (2): 88-90
46 Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, De Long EF. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398 (6730): 802-805
47 Knittel K, L?sekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps [J]. Appl Environ Microbiol, 2005, 71 (1): 467-479
48 Niemann H, Losekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink [J]. Nature, 2006, 443 (7113): 854-858
49 Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K, Teske A, Boetius A. Thermophilic anaerobic oxidation of methane by marine microbial consortia [J]. ISME J, 2011, 5: 1946-1956
50 Katrin K, Antje B. Anaerobic Oxidation of Methane With Sulfate [M]. Dordrecht: Springer, 2011
51 Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments [J]. Geobiol, 2014, 12 (2): 172-181
52 Broman E. Observation of methanogenesis and potential iron-dependent anaerobic oxidation of methane in old lake sediments, a study of two boreal forest lakes [D]. Uppsala: Uppsala University, 2013
53 Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VH. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps [J]. PNAS, 2014, 111 (40): E4139-4147
54 Fernandes CEG, Gonsalves MJBD, Nazareth DR, Nagarchi L, Kamaleso SA. Microbial iron reduction and methane oxidation in subsurface sediments of the Arabian Sea [J]. Mar Petrol Geol, 2015, 67: 327-335
55 Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJCT, Van Alen T, Luesken F, Wu ML, Van De Pas-Schoonen KT, Op Den Camp HJM, Jassen-Megens EM, Francoijs K, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464: 543-548
56 Bar-Or I, Elvert M, Eckert W, Kushmaro A, Vigderovich H, Zhu Q, Ben-Dov E, Orit S. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals [J]. Environ Sci Technol, 2017, 51 (21): 12293-12301
57 Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annu Rev Microbiol, 2009, 63: 311-334
58 Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. Erratum: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage [J]. Nature, 2013, 500: 567-570
59 Cai C, Leu AO, Xie G, Guo J, Feng Y, Zhao J, Tyson GW, Yuan Z, Hu S. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction [J]. ISME J, 2018, 12: 1929-1939
60 Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS [J]. Environ Microbiol, 2009, 11: 1777-1791
61 Chang Y, Cheng T, Lai W, Tsai W, Sun C, Lin L, Wang P. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan [J]. Environ Microbiol, 2012, 14: 895-908
62 Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, Kulkarni A, Blumers M, Shylin SI, Ksenofontov V, Costa BFO, Klingelh?fer G, Friedrich MW. Distinct microbial populations are tightly linked to the profile of dissolved [J]. Front Microbiol, 2015, 6: 365
63 Lu YZ, Fu L, Ding J, Ding ZW, Li N, Zeng RJ. Cr (VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor [J]. Water Res, 2016, 102: 445-452
64 Mills HJ, Martinez RJ, Story S, Sobecky PA. Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries [J]. Appl Environ Microbiol, 2005, 71: 3235-3247
65 Lloyd KG, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments [J]. Appl Environ Microbiol, 2006, 72:7218-7230
66 Martinez RJ, Mills HJ, Story S, Sobecky PA. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico [J]. Environ Microbiol, 2006, 8: 1783-1796
67 Schubert CJ, Vazquez F, Losekann-Behrens T, Knittel K, Tonolla M, Boetius A. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno) [J]. FEMS Microbiol Ecol, 2011, 76: 26-38
68 Timmers PH, Suarez-Zuluaga DA, Van Rossem M, Diender M, Stams AJ, Plugge CM. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source [J]. ISME J, 2016, 10: 1400-1412
69 Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MS, Rockmann T, Van Der Veen C, B?nd? N, Kartal B, Ettwig KF, Slomp CP. Iron mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environ Sci Technol, 2015, 49: 277-283
70 He Q, Yu L, Li J, He D, Cai X, Zhou S. Electron shuttles enhance anaerobic oxidation of methane coupled to iron (III) reduction [J]. Sci Total Environ, 2019, 688: 664-672
71 Zhang B, Jiang Y, Zuo K, He C, Dai Y, Ren ZJ. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater [J]. J Hazard Mater, 2020, 382: 121228
72 Lai CY, Dong QY, Rittmann BE, Zhao HP. Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor [J]. Environ Sci Technol, 2018, 52 (15): 8693-8700
73 Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea [J]. Appl Environ Microbio, 2007, 73 (7):2271-2283
74 Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ. Reverse methanogenesis and respiration in methanotrophic archaea [J]. Archaea, 2017, 17: 1-22
75 Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, Van Niftrik L. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’ [J]. Biochem Soc Trans, 2011, 39: 243-248
76 He Z, Geng S, Pan Y, Cai C, Wang J, Wang L, Liu S, Zheng P, Xu X, Hu B. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: iron (II) and copper (II) make a difference [J]. Water Res, 2015, 85: 235-243
77 Arshad A, Speth DR, De Graaf RM, Den Camp HJO, Jetten MS, Welte CU. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea [J]. Front Microbiol, 2015, 6: 1423
78 Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria [J]. Nature, 2015, 526: 587-590
79 Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane [J]. Front Microbiol, 2016, 7 (46): 1-16
80 He Z, Zhang Q, Feng Y, Luo H, Pan X, Gadd GM. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane [J]. Sci Total Environ, 2018, 610: 759-768
81 Lovley DR. Extracellular electron transfer: wires, capacitors, iron lungs, and more [J]. Geobiology, 2008, 6: 225-231
82 Nakamura R, Kai F, Okamoto A, Hashimoto K. Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides [J]. J Mater Chem A, 2013, 1: S148
83 Wu C, Cheng Y, Li B, Li W, Li D, Yu H. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1 [J]. Bioresource Technol, 2013, 136: 711-714
84 Folgosa F, Tavares P, Pereira AS. Iron management and production of electricity by microorganisms [J]. Appl Microbiol Biotechnol, 2015, 99 (20): 8329-8336
85 Ding J, Lu YZ, Fu L, Ding ZW, Mu Y, Cheng SH, Zeng RJ. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell [J]. Water Res, 2017, 110: 112-119
86 McAnulty MJ, Poosarla VG, Kim KY, Jasso-Chavez R, Logan BE, Wood TK. Electricity from methane by reversing methanogenesis [J]. Nat Commun, 2017, 8: 15419
87 Nauhaus K, Treude T, Boetius A, Kruger M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities [J]. Environ Microbiol, 2005, 7: 98-106
88 Esther J, Sukla LB, Pradhan N, Panda S. Fe(III) reduction strategies of dissimilatory iron reducing bacteria [J]. Korean J Chem Eng, 2015, 32: 1-14
89 Yan Z, Joshi P, Gorski CA, Ferry JG. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration [J]. Nature Commun, 2018, 9 (1): 1642
90 Moran JJ, House CJ, Thomas B, Freeman KH. Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina [J]. J Geophys Res, 2007, 112 (G2): 10.1029/2006jg000268
91 Moran JJ, House CH, Freeman KH, Ferry JG. Trace methane oxidation studied in several Euryarchaeota under diverse conditions [J]. Archaea, 2005, 15: 303-309
92 Soo VW, McAnulty MJ, Tripathi A, Zhu F, Zhang L, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S, Salis HM, Ferry JG, Maranas CD, Patterson AD, Wood TK. Reversing methanogenesis to capture methane for liquid biofuel precursors [J]. Microbial Cell Fact, 2016, 15: 11
93 Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens [J]. Biochim Biophys Acta, 2014, 1837: 1130-1147
94 Wang M, Tomb JF, Ferry JG. Electron transport in acetate-grown Methanosarcina acetivorans [J]. BMC Microbiol, 2011, 11: 165
95 Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K, Moran JJ, Karger BL, Ferry JG. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics [J]. PNAS, 2006, 103: 17921-17926
96 Yan Z, Wang M, Ferry JG. A Ferredoxin-and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea [J]. mBio, 2017, 8: e02285-16
97 Schlegel K, Leone V, Faraldo-Gomez JD, Muller V. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation [J]. PNAS, 2012, 109: 947-952
98 Jasso-Chavez R, Apolinario EE, Sowers KR, Ferry JG. MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans [J]. J Bacteriol, 2013, 195: 3987-3994
99 Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, Hu S, Tyson GW. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae [J]. ISME J, 2020, 14 (4): 1030-1041
100 He Z, Geng S, Shen L, Lou L, Zheng P, Xu X. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction [J]. Water Res, 2015, 68: 554-562
101 Bonneville S, Behrends T, Van Cappellen P. Solubility and dissimilatory reduction kinetics of iron (III) oxyhydroxides: a linear free energy relationship [J]. Geochim Cosmochim Acta, 2009, 73: 5273-5282
102 Majzlan J. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate [J]. Environ Sci Technol, 2011, 45: 4726-4732
103 Nealson KH, Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation [J]. Annu Rev Microbiol, 1994, 48: 311-343
104 Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens [J]. ISME J, 2017, 11 (3): 1-12
105 Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, Greiner G, Beifuss U. Redox potentials of methanophenazine and CoBS-S-CoM, factors involved in electron transport in methanogenic archaea [J]. Chembiochem Eur J Chem Biol, 2003, 4 (4): 333-335
106 Cutting RS, Coker VS, Fellowes JW, Lloyd JR, Vaughan DJ. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens [J]. Geochim Cosmochim Acta, 2009, 73: 4004-4022
107 Lloyd KG, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments [J]. Appl Environ Microbiol, 2006, 72: 7218-7230
108 Lovley D. Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes [J]. Prokaryotes, 2006, 2: 635-658
109 Hori T, Muller A, Igarashi Y, Conrad R, Friedrich MW. Identification of iron reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing [J]. ISME J, 2010, 4: 267-278
110 Lovley DR, Phillips EJ. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river [J]. Appl Environ Microbiol, 1986, 52: 751-757
111 Ding LJ, Su JQ, Xu HJ, Jia ZJ, Zhu YG. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing [J]. ISME J, 2015, 9: 721-734
112 Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, Ogata A, Friedrich MW, Conrad R, Kamagata Y. Isolation of microorganisms involved in reduction of crystalline iron (III) oxides in natural environments [J]. Front Microbiol, 2015, 6: 386
113 Bosch J, Heister K, Hofmann T, Meckenstock RU. Nanosized iron oxide colloids strongly enhance microbial iron reduction [J]. Appl Environ Microbiol, 2010, 76: 184-189
114 Nor?i Kà, Thamdrup B, Schubert CJ. Anaerobic oxidation of methane in an ironrich Danish freshwater lake sediment [J]. Limnol Oceanogr, 2013, 58: 546-554
115 Smith RW, Bianchi TS, Allison M, Savage C, Galy V. High rates of organic carbon burial in fjord sediments globally [J]. Nat Geosci, 2015, 8: 450-453
116 Cartapanis O, Bianchi D, Jaccard SL, Galbraith ED. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima [J]. Nature Commun, 2016, 7: 10796
117 Lehner B, D?ll P. Development and validation of a global database of lakes, reservoirs and wetlands [J]. J Hydrol, 2004, 296: 1-22
118 Rooze J, Egger M, Tsandev I, Slomp CP. Iron-dependent anaerobic oxidation of methane in coastal surface sediments: potential controls and impact [J]. Limnol Oceanogr, 2016, 61: S267-S282
119 Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments [J]. Geobiol, 2014, 12: 172-181
120 Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Gomez Ramirez E, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B, Stewart FJ. NC10 bacteria in marine oxygen minimum zones [J]. ISME J, 2016, 10: 2067-2071
121 Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chlier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn R, Rigby M, Ring B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, Van Der Werf GR, Voulgarakis A, Van Weele M, Weiss RF, Williams JE, Zeng G. Three decades of global methane sources and sinks [J]. Nat Geosci, 2013, 6: 813-823
122 Cai Y, Zheng Y, Bodelier PL, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils [J]. Nature Commun, 2016, 7: 11728
123 Hu B, Shen L, Lian X, Zhu Q, Liu S, Huang Q, He Z, Geng S, Cheng D, Lou L, Xu X, Zheng P, He Y. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands [J]. PNAS, 2014, 111: 4495-4500
124 Segarra KE, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions [J]. Nature Commun, 2015, 6: 7477
125 He Z, Wang J, Hu J, Zhang H, Cai C, Shen J, Xu X, Zheng P, Hu B. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria [J]. Appl Microbiol Biotechnol, 2016, 100: 5099-5108
126 Ahmed M, Lin LS. Ferric reduction in organic matter oxidation and its applicability for anaerobic wastewater treatment: a review and future aspects [J]. Rev Environ Sci Biotechnol, 2017, 16: 273-287
127 Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction [J]. Nat Rev Microbiol, 2006, 4: 752-764
128 Egger M, Kraal P, Jilbert T, Sulu-Gambari F, Sapart CJ, R?ckmann T, Slomp CP. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea [J]. Biogeosci, 2016, 13: 5333-5355
129 Egger M, Hagens M, Sapart CJ, Dijkstra N, Van Helmond NAGM, Mogollón JM, Risgaard-Petersen N, Van Der Veen C, Kasten S, Riedinger N, B?ttcher ME, R?ckmann T, J?rgensen BB, Slomp CP. Iron oxide reduction in methane-rich deep Baltic Sea sediments [J]. Geochim Cosmochim Acta, 2017, 207: 256-276

更新日期/Last Update: 2020-08-25