|本期目录/Table of Contents|

[1]李倩倩,王燕,诸葛斌,等.产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响[J].应用与环境生物学报,2017,23(06):1006-1010.[doi:10.3724/SP.J.1145.2017.01031]
 LI Qianqian,WANG Yan,et al.Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1006-1010.[doi:10.3724/SP.J.1145.2017.01031]
点击复制

产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
1006-1010
栏目:
微生物资源发掘与生物合成专栏论文
出版日期:
2017-12-25

文章信息/Info

Title:
Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae
作者:
李倩倩 王燕 诸葛斌 陆信曜 宗红 方慧英 宋健
1江南大学糖化学与生物技术教育部重点实验室 无锡 214122 2江南大学工业生物技术教育部重点实验室,生物工程学院,工业微生物研究中心 无锡 214122 3江南大学化学与材料工程学院 无锡 214122
Author(s):
LI Qianqian1 2 WANG Yan1 2 ZHUGE Bin1 2** LU Xinyao2 ZONG Hong2 FANG Huiying1 2 & SONG Jian3
1 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China 2 Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Laboratory of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China 3 School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
关键词:
产甘油假丝酵母转录因子过表达酸耐受性乙醇产量
Keywords:
Candida glycerinogenes transcription factor overexpression acid tolerance ethanol yield
分类号:
Q78 : TQ923
DOI:
10.3724/SP.J.1145.2017.01031
摘要:
以具有优良环境耐受性的产甘油假丝酵母(Candida glycerinogenes)为研究对象,考察其抗逆转录因子对酿酒酵母(Saccharomyces cerevisiae)酸胁迫耐受性的影响. 分别克隆获得C. glycerinogenes和S. cerevisiae的转录因子基因haa1和asg1,在S. cerevisiae W303-1A中分别过表达这4个基因,继而进行摇瓶试验考察重组菌株的酸耐受性. 结果显示,过表达不同转录因子均能提高细胞酸耐受性,其中90 mmol/L乙酸时重组菌S. cerevisiae/Cghaa1和S. cerevisiae/Cgasg1的生物量与S. cerevisiae/Schaa1和S. cerevisiae/Scasg1相比分别提高了44.3%和18.9%. qRT-PCR发现,与Schaa1和Scasg1相比,过表达Cghaa1和Cgasg1能够显著上调下游酸耐受相关基因的表达水平. 酸胁迫下乙醇发酵结果显示,相比对照组,重组菌S. cerevisiae/ Cgasg1的乙醇产量提高11.1%. 上述结果表明转录因子HAA1和ASG1均能提高酿酒酵母酸耐受性和酸胁迫下乙醇产量,其中Cghaa1和Cgasg1效果更为明显,结果可为提高酿酒酵母酸耐受性提供新的基因资源和思路,为进一步挖掘C. glycerinogenes抗逆基因提供借鉴. (图3 表1 参21)
Abstract:
The aim of this study was to examine the effect of antiretroviral transcription factors of Candida glycerinogenes on the tolerance of Saccharomyces cerevisiae to acid stress. The haa1 and asg1 genes of C. glycerinogenes and S. cerevisiae strains were obtained by cloning, and these four genes were subsequently overexpressed in S. cerevisiae W303-1A. The acid tolerance of the recombinant strains was examined using shake flask experiments. The results showed that overexpression of different transcription factors increased the acid tolerance. In comparison with S. cerevisiae/Schaa1 and S. cerevisiae/Scasg1, the biomass of S. cerevisiae/Cghaa1 and S. cerevisiae/Cgasg1 in 90 mmol/L acetic acid was 44.3% and 18.9% higher, respectively. Strains overexpressing Cgasg1 and Cghaa1 exhibited enhanced tolerance to a high concentration of acetic acid. qRT-PCR analysis revealed that overexpression of Cghaa1 and Cgasg1 significantly up-regulated the expression of downstream acid-tolerance-related genes. Under conditions of acid stress, the ethanol yield of S. cerevisiae/Cgasg1 was 11.1% higher than that of the control group. These results indicate that the transcription factors HAA1 and ASG1 can enhance the tolerance of S. cerevisiae to acid stress. This study provides a valuable insight into techniques for improving the acid tolerance of S. cerevisiae and for future research into C. glycerinogenes resistance genes.

参考文献/References:

1 Mira NP, Becker JD, Sd-Correia I. Genomic expression program involving the haalp-regulon in Saccharomyces cerevisiae response to acetic acid [J]. OMICS, 2010, 14 (5): 587-601
2 Ough CS. Fermentation rates of grape juice. II. Effect of initial ethyl alcohol, pH, and fermentation temperature [J]. Am J Enol Vitic, 1966, 17 (2): 74-81
3 Buzas Z, Dallmann K, Szajani B. Influence of pH on the growth and ethanol production of free and immobilized Saccharomyces cerevisiae cells [J]. Biotechnol Bioeng, 1989, 34 (6): 882-884
4 Nielsen MK, Arneborg N. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures [J]. Food Microbiol, 2007, 24 (1): 101-105
5 Yalcin SK, Yesim OZ. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey [J]. Braz J Microbiol, 2008, 39 (2): 325-332
6 刘兴艳. 低pH对酿酒酵母酒精发酵的影响及酵母应答酸胁迫机制初探[D]. 北京: 中国农业大学, 2015 [Liu XY. Effect of low pH on alcoholic fermentation and primary study of acid stress response in Saccharomyces cerevisiae [D]. Beijing: China Agricultural University, 2015]
7 Koichi T, Yukari I, Jun O, Jun S. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator [J]. Appl Environ Microbiol, 2012, 78 (22): 8161-8163
8 Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes [J]. Biochem Biophy Res Commum, 2005, 337: 95-103
9 Arroyo-Lopez FN, Orli’c S, Querol A. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid [J]. Int J Food Microbiol, 2009, 131 (2-3): 120-127
10 Wu J, Chen X, Cai L, Tang L, Liu L. Transcription factors Asg1p and Hal1p regulated pH homeostasis in Candida glabrata [J]. Front Microbiol, 2015, 6: 843
11 郑昌欣, 诸葛斌, 陆信曜, 宗红, 李静. 渗透压对产甘油假丝酵母磷酸果糖激酶和6-磷酸葡萄糖脱氢酶的调控[J]. 应用与环境生物学报, 2017, 22 (1): 123-128 [Zheng CX, Zhuge B, Lu XY, Zong H, Li J. Effects of osmostress on phosphofructokinase and 6-phosphate glucose dehydrogenase of Candida glycerinogenes [J]. Chin J Appl Environ Biol, 2017, 22 (1): 123-128]
12 Looke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications [J]. Biotechniques, 2011, 50 (5): 325-328
13 王晨莹. 产甘油假丝酵母高渗甘油应答途径关键基因CgHOG1的研究[D]. 无锡: 江南大学, 2013 [Wang CY. Study on the key gene of high osmolarity glycerol pathway-CgHOG1 in Candida glycerinogenes [D]. Wuxi: Jiangnan University, 2013]
14 Guo XK, Fang HY, Zhuge B. BudC knockout in Klebsiella pneumonia for bioconversion from glycerol to 1,3-propanediol [J]. Biotechnol Appl Biochem, 2013, 60 (6): 557-563
15 Takao K, Kenro T, Hediheko S, Katsuhiro K, Naoto I, Makoto H, Haruo T, Takao I. Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis [J]. Appl Microbiol Biotechnol, 2010. 87 (5): 1841-1853
16 赵心清, 张明明, 徐桂红, 许建韧, 白凤武. 酿酒酵母乙酸耐性分子机制的功能基因组进展[J]. 生物工程学报, 2014, 30 (3): 368-380. [Zhao XQ, Zhang MM, Xu GH, Xu JR, Bai FW. Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae [J]. Chin J Biotechnol, 2014, 30 (3): 368-380]
17 Destruelle M, Holzer H, Klionsky DJ. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation [J]. Mol Cell Biol, 1994, 14 (4): 2740-2754
18 Orij R, Brul S, Smits GJ. Intracelluar pH is a tightly controlled signal in yeast. Biochim Biophys, 2011, 1810 (10): 933-944
19 Liu Z, Evan R. Simpson. Molecular mechanism for cooperation between Sp1 and steroidogenic factor-1 (SF-1) to regulate bovine CYP11A gene expression [J]. Mol Cell Endocrinol, 1999, 153 (1-2): 183-196
20 Yoshito S, Gengo K, Anandhakumar C, Sefan A, Guo CX, Shinsuke S, Kaori H, Toshikazu B, Hiroshi S. Sequence-specific DNA binding by long hairpin pyrrole-imidazole polyamides containing an 8-amino-3,6-dioxaoctanoic acid unit [J]. Bioorgan Med Chem, 2016, 24 (16): 3603-3611
21 Klimova N, Yeung R, Kachurina N, Turcotte B. Phenotypic analysis of a family of transcriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata [J]. Gene Genomes Genet (Bethesda), 2014, 4 (5): 931-940

相似文献/References:

[1]王琦琳,牛向丽,刘永胜.玉米两个功能未知转录因子基因的转录后加工[J].应用与环境生物学报,2009,15(04):483.[doi:10.3724/SP.J.1145.2009.00483]
 WANG Qilin,NIU Xiangli,LIU Yongsheng.Post-transcriptional Processing of Two Functions of Unknown Transcription Factor Genes in Zea mays[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):483.[doi:10.3724/SP.J.1145.2009.00483]
[2]李伟,韩蕾,钱永强,等.植物NAC转录因子的种类、特征及功能[J].应用与环境生物学报,2011,17(04):596.[doi:10.3724/SP.J.1145.2011.00596]
 LI Wei,HAN Lei,QIAN Yongqiang,et al.Characteristics and Functions of NAC Transcription Factors in Plants[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):596.[doi:10.3724/SP.J.1145.2011.00596]
[3]丁小云,诸葛斌,方慧英,等.产甘油假丝酵母补料发酵中的甘油合成衰减[J].应用与环境生物学报,2012,18(05):791.[doi:10.3724/SP.J.1145.2012.00791]
 DING Xiaoyun,ZHUGE Bin,FANG Huiying,et al.Glycerol Synthesis Attenuation of Candida glycerinogenes in Fed-batch Fermentation[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):791.[doi:10.3724/SP.J.1145.2012.00791]
[4]黄胜雄,刘永胜.土豆WRKY转录因子家族的生物信息学分析[J].应用与环境生物学报,2013,19(02):205.[doi:10.3724/SP.J.1145.2013.00205]
 HUANG Shengxiong,LIU Yongsheng.Genome-wide Analysis of WRKY Transcription Factors in Solanum tuberosum[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):205.[doi:10.3724/SP.J.1145.2013.00205]
[5]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):767.[doi:10.3724/SP.J.1145.2014.01033]
[6]郑昌欣,诸葛斌,陆信曜,等.渗透压对产甘油假丝酵母磷酸果糖激酶和6-磷酸葡萄糖脱氢酶的调控[J].应用与环境生物学报,2017,23(01):123.[doi:10.3724/SP.J.1145.2016.02002]
 ZHENG Changxin,ZHUGE Bin,et al.Effects of osmostress on phosphofructokinase and 6-phosphate glucose dehydrogenase of Candida glycerinogenes[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):123.[doi:10.3724/SP.J.1145.2016.02002]
[7]秦丽娟,高瑛,陆信曜,等.产甘油假丝酵母甘油分解代谢CgGCY1、gGCY2和CgDAK基因的克隆、敲除及其功能[J].应用与环境生物学报,2017,23(06):999.[doi:10.3724/SP.J.1145.2017.01017]
 QIN Lijuan,GAO Ying,et al.Cloning, deletion, and function of genes involved in the glycerol catabolism pathway of Candida glycerinogenes[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):999.[doi:10.3724/SP.J.1145.2017.01017]
[8]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
[9]吴华彰,洪运,池宇欣,等.转录因子ATF-7参与调控氧化石墨烯(GO)对秀丽线虫的致毒效应[J].应用与环境生物学报,2019,25(02):339.[doi:10.19675/j.cnki.1006-687x.2018.11015]
 WU Huazhang,HONG Yun,CHI Yuxin & ZHAO yunli**.Regulation effect of the transcription factor ATF-7 on the GO toxicity in Caenorhabditis elegans[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):339.[doi:10.19675/j.cnki.1006-687x.2018.11015]

更新日期/Last Update: 2017-12-25