|本期目录/Table of Contents|

[1]李亚,刘楠,霍亚鹏,等.基于生物分子识别的水环境Hg2+快速检测新技术研究进展[J].应用与环境生物学报,2017,23(06):1172-1177.[doi: 10.3724/SP.J.1145.2017.01020]
 LI Ya,,et al.Review of novel technologies for rapid detection of Hg2+ in water environment via biological molecular recognition[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1172-1177.[doi: 10.3724/SP.J.1145.2017.01020]
点击复制

基于生物分子识别的水环境Hg2+快速检测新技术研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
1172-1177
栏目:
综述
出版日期:
2017-12-25

文章信息/Info

Title:
Review of novel technologies for rapid detection of Hg2+ in water environment via biological molecular recognition
作者:
李亚 刘楠 霍亚鹏 李晓丽 马新华 唐淑阁 汪彩琴 张印红 刘辉 王玉
1兰州大学公共卫生学院 兰州 730000 2广州医科大学公共卫生学院 广州 511436 3军事科学院军事医学研究院环境医学与作业医学研究所 天津 300050
Author(s):
LI Ya1 2 3 LIU Nan1 2 3** HUO Yapeng3 LI Xiaoli3 MA Xinhua3 TANG Shuge3 WANG Caiqin1 3 ZHANG Yinhong1** LIU Hui1 & WANG Yu1
1 School of Public Health, Lanzhou University, Lanzhou 730000, China 2 School of Public Health, Guangzhou Medical University, Guangzhou 511436, China 3 Institute of Environmental & Operational Medicine, Academy of Military Medicine, Chinese Academy of Military Sciences, Tianjin 300050, China
关键词:
生物分子Hg2+蛋白质寡核苷酸脱氧核酶纳米材料
Keywords:
biological molecule Hg2+ protein oligonucleotide DNAzyme nanomaterial
分类号:
X83 : Q526.1
DOI:
10.3724/SP.J.1145.2017.01020
摘要:
生物分子作为化学污染物靶标特异识别和检测的重要元件和材料,在检测领域得到了广泛应用和长足发展. 本文总结了一系列基于生物分子识别或放大机制的水环境中Hg2+快速检测新技术研究进展,新型Hg2+检测方法以蛋白质、寡核苷酸、脱氧核酶等生物分子为基础,通过紫外、荧光、电化学、电化学发光或拉曼光谱等检测手段实现了环境水样中Hg2+高灵敏甚至超灵敏检测,远远满足国家卫生标准或美国环境保护署的要求;同时还分析了相关检测原理和应用前景,生物分子经过修饰和改造后检测体系性能得以加强;生物分子与纳米材料,如贵金属纳米材料、氧化石墨烯、碳纳米管等相结合,并联合新型检测平台,大大推动了水环境中Hg2+现场快速灵敏检测技术的发展,促进了多种Hg2+检测传感新技术的建立. 建议今后加强检测元件之间相互作用机制的研究,同时要提高现场快速检测设备的开发,进一步增强其在实际应用中的可行性和实用性. (表1 参57)
Abstract:
Biological molecules are the key components and materials for specific recognition and detection of chemical pollutants; they are widely used in the detection research and are rapidly improved. This review summarizes a series of rapid novel detection technologies for Hg2+ in environmental water samples via the identification and amplification mechanism of biological molecules, including protein, oligonucleotide, DNAzyme, etc. The quantitative detection of Hg2+ with high sensitivity and even ultra-sensitivity in environmental water samples has been achieved by ultraviolet spectrophotometry, fluorescence spectrophotometry, electrochemistry, electrochemiluminescence, Raman spectroscopy, etc. It adequately met the requirement of the national standard of China or that of the U.S. Environmental Protection Agency in drinking water. The principle and application prospects have been explored, and the performance of the detection system has been improved by modification and reform of biological molecules. The rapid development of sensitive and on-site test technologies and sensors was greatly promoted by the combination with a novel detection platform and nanomaterials, including noble metal nanoparticles, graphene oxide, carbon nanotubes, etc. In further studies, researchers should reveal the mechanism of interaction between detecting elements and develop field rapid-detection equipment. The feasibility of practical application is also further heightened.

参考文献/References:

1 Boening DW. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere, 2000, 40 (12): 1335-1351
2 Nendza M, Herbst T, Kussatz C, Gies A. Potential for secondary poisoning and biomagnification in marine organisms [J]. Chemosphere, 1997, 35 (9): 1875-1885
3 Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations [J]. Environ Res, 1998, 77 (2): 68-72
4 Harris HH, George GN. The chemical form of mercury in fish-response [J]. Science, 2003, 301 (5637): 1203-1203
5 Kuwabara JS, Arai Y, Topping BR, Pickering IJ, George GN. Mercury speciation in piscivorous fish from mining-impacted reservoirs [J]. Environ Sci Technol, 2007, 41 (8): 2745-2749
6 Mason RP, Morel FMM, Hemond HF. The role of microorganisms in elemental mercury formation in natural waters [J]. Water Air Soil Pollut, 1995, 80 (1): 775-787
7 Celo V, Lean DRS, Scott SL. Abiotic methylation of mercury in the aquatic environment [J]. Sci Total Environ, 2006, 368 (1): 126-137
8 Silbergeld EK, Silva IA, Nyland JF. Mercury and autoimmunity: implications for occupational and environmental health [J]. Toxicol Appl Pharmacol, 2005, 207 (2): 282-292
9 Forman J, Moline J, Cernichiari E, Sayegh S, Torres JC, Landrigan MM, Hudson J, Adel HN, Landrigan PJ. A cluster of pediatric metallic mercury exposure cases treated with meso-2,3-dimercaptosuccinic acid (DMSA) [J]. Environ Health Perspect, 2000, 108 (6): 575-577
10 Newby CA, Riley D, Lealalmeraz TO. Mercury use and exposure among santeria practitioners: religious versus folk practice in Northern New Jersey, USA [J]. Ethn Health, 2006, 11 (3): 287-306
11 Factorlitvak P, Hasselgren G, Jacobs D, Begg MD, Kline J, Geier J, Mervish N, Schoenholtz S, Graziano JH. Mercury derived from dental amalgams and neuropsychologic function [J]. Environ Health Perspect, 2003, 111 (5): 719-723
12 Pichichero ME, Cernichiari E, Lopreiato J, Treanor JJ. Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: a descriptive study [J]. The Lancet, 2002, 360 (9347): 1737-1741
13 Counter SA, Buchanan LH. Mercury exposure in children: a review [J]. Toxicol Appl Pharmacol, 2004, 198 (2): 209-230
14 Kaur P, Aschner M, Syversen T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes [J]. Neurotoxicology, 2006, 27 (4): 492-500
15 Milaeva ER. The role of radical reactions in organomercurials impact on lipid peroxidation [J]. J Inorg Biochem, 2006, 100 (5): 905-915
16 Zalups RK, Lash LH. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status [J]. Toxicol Appl Pharmacol, 2006, 214 (1): 88-97
17 Louie H, Wong C, Huang YJ, Fredrickson S. A study of techniques for the preservation of mercury and other trace elements in water for analysis by inductively coupled plasma mass spectrometry (ICP-MS) [J]. Anal Methods, 2012, 4 (2): 522-529
18 Reis A, Lopes CB, Davidson CM, Duarte AC, Pereira E. Extraction of mercury water-soluble fraction from soils: an optimization study [J]. Geoderma, 2014, 213: 255-260
19 Escudero LB, Olsina RA, Wuilloud RG. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry [J]. Talanta, 2013, 116 (22): 133-140
20 Tan H, Zhang Y, Chen Y. Detection of mercury ions (Hg2+) in urine using a terbium chelate fluorescent probe [J]. Sens Actuators B, 2011, 156 (1): 120-125
21 George GN, Singh SP, Myers GJ, Watson GE, Pickering IJ. The chemical forms of mercury in human hair: a study using X-ray absorption spectroscopy [J]. J Biol Inorg Chem, 2010, 15 (5): 709-715
22 Zhan S, Wu Y, Wang L, Zhan X, Pei Z. A mini-review on functional nucleic acids-based heavy metal ion detection [J]. Biosens Bioelectron, 2016, 86: 353-368
23 Wang Y, Yang H, Pschenitza M, Niessner R, Li Y, Knopp D, Deng A. Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody [J]. Anal Bioanal Chem, 2012, 403 (9): 2519-2528
24 Wang Y, Wang L, Wang S, Yang M, Cai J, Liu F. ‘Green’ immunochromato- graphic electrochemical biosensor for mercury(II) [J]. Mikrochim Acta, 2016, 183 (9): 2509-2516
25 Xu M, Chen M, Dong T, Zhao K, Deng A, Li J. Flow injection chemiluminescence immunoassay based on resin beads, enzymatic amplification and a novel monoclonal antibody for determination of Hg2+ [J]. Analyst, 2015, 140 (18): 6373-6378
26 张何, 胡家义, 傅昕. 一种基于钝顶螺旋藻藻蓝蛋白荧光猝灭法的汞离子传感新方法[J]. 分析测试学报, 2012, 31 (8): 897-902 [Zhang H, Hu JY, Fu X. A new method for determination of mercury ions based on the fluorescence quenching of phycocyanin from spirulina platensis [J]. J Instrum Anal, 2012, 31 (8): 897-902]
27 Zhu R, Zhou Y, Wang XL, Liang LP, Long YJ, Wang QL, Zhang HJ, Huang XX, Zheng HZ. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters [J]. Talanta, 2013, 117 (22): 127-132
28 Kanekiyo Y, Naganawa R, Tao H. Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation [J]. Chem Commun, 2004, (8): 1006-1007
29 Wegner SV, Okesli A, Chen P, He C. Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selective sensor for Hg2+ [J]. J Am Chem Soc, 2007, 129 (12): 3474-3475
30 马佳, 刘楠, 马新华, 李晓丽, 刘亚楠, 李亚, 梁伟杰, 周志江. 双链DNA中汞/银离子-嘧啶碱基对间结合作用及其在检测技术方面的应用研究进展[J]. 应用与环境生物学报, 2015, 21 (5): 848-853 [Ma J, Liu N, Ma XH, Li XL, Liu YN, Li Y, Liang WJ, Zhou ZJ . Review on the study of mercury/silver ions-pyrimidine base pairs in DNA duplexes and their application in detection technology [J]. Chin J Appl Environ Biol, 2015, 21 (5): 848-853]
31 Guo LQ, Yin N, Chen GN. Photoinduced electron transfer mediated by pi-stacked thymine-Hg2+-thymine base pairs [J]. J Phys Chem C, 2011, 115 (11): 4837-4842
32 Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions [J]. Angew Chem Int Ed, 2004, 43 (33): 4300-4302
33 Ma J, Liu N, Li L, Ma X, Li X, Liu Y, Li Y, Zhou Z, Gao Z. An evaluation assay for thymine–mercuric–thymine coordination in the molecular beacon-binding system based on microscale thermophoresis [J]. Sens Actuators B: Chem, 2017, 252: 680-688
34 Wang S, Si S. Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis [J]. Anal Methods, 2013, 5 (12): 2947-2953
35 Teh HB, Wu H, Zuo X, Li SFY. Detection of Hg2+ using molecular beacon-based fluorescent sensor with high sensitivity and tunable dynamic range [J]. Sens Actuators B, 2014, 195: 623-629
36 Li Y, Liu N, Liu H, Wang Y, Hao Y, Ma X, Li X, Huo Y, Lu J, Tang S. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples[J]. Sci Rep, 2017, 7: 45974
37 Zhou Z, Huang H, Chen Y, Liu F, Huang CZ, Li N. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design [J]. Biosens Bioelectron, 2014, 52: 367-373
38 Zhang L, Chang H, Hirata A, Wu H, Xue Q, Chen M. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions [J]. ACS Nano, 2013, 7 (5): 4595-4600
39 Zhang M, Ge L, Ge SG, Yan M, Yu JH, Huang JD, Liu S. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique [J]. Biosens Bioelectron, 2013, 41(6): 544-550
40 Zhou GH, Chang JB, Pu HH, Shi KY, Mao S, Sui XY, Ren R, Cui SM, Chen JH. Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field effect transistor device [J]. ACS Sens, 2016, 1 (3): 295-302
41 Zeng GM, Zhang C, Huang DL, Lai C, Tang L, Zhou YY, Xu PA, Wang H, Qin L, Cheng M. Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection [J]. Biosens Bioelectron, 2017, 90: 542-548
42 Zhu SS, Zhuo Y, Miao H, Zhong D, Yang XM. Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg2+-thymidine duplexes [J]. Luminescence, 2015, 30 (5): 631-636
43 Li M, Zhou X, Ding W, Guo S, Wu N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II) [J]. Biosens Bioelectron, 2013, 41 (4): 889-893
44 Zhang Y, Zhao H, Wu Z, Xue Y, Zhang X, He Y, Li X, Yuan Z. A novel graphene-DNA biosensor for selective detection of mercury ions [J]. Biosens Bioelectron, 2013, 48 (2): 180-187
45 Lu C, Huang PJJ, Ying YB, Liu JW. Covalent linking DNA to graphene oxide and its comparison with physisorbed probes for Hg2+ detection [J]. Biosens Bioelectron, 2016, 79: 244-250
46 Niu SY, Li QY, Ren R, Hu KC. DNA/single-walled carbon nanotubes based fluorescence detection of Hg2+ [J]. Anal Lett, 2010, 43 (15): 2432-2439
47 Yao L, Teng J, Zhu MY, Zheng L, Zhong YH, Liu GD, Xue F, Chen W. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions [J]. Biosens Bioelectron, 2016, 85: 331-336
48 Li Z, Ni Y, Kokot S. A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg (II) [J]. Biosens Bioelectron, 2015, 74: 91-97
49 Liu YC, Wang XQ, Wu H. Reusable DNA-functionalized-graphene for ultrasensitive mercury (II) detection and removal [J]. Biosens Bioelectron, 2017, 87: 129-135
50 Liu SL, Kang MM, Yan FF, Peng DL, Yang YQ, He LH, Wang MH, Fang SM, Zhang ZH. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection [J]. Electrochim Acta, 2015, 160: 64-73
51 Cui X, Zhu L, Wu J, Hou Y, Wang PY, Wang ZN, Yang M. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection [J]. Biosens Bioelectron, 2015, 63: 506-512
52 Huang DW, Niu CG, Zeng GM, Wang XY, Lü XX. A highly sensitive protocol for the determination of Hg2+ in environmental water using time-gated mode [J]. Talanta, 2015, 132: 606-612
53 Cao C, Zhang J, Li S, Xiong Q. Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy [J]. Small, 2014, 10 (16): 3252-3256
54 Zhang Q, Cai Y, Li H, Kong D, Shen H. Sensitive dual DNAzymes-based sensors designed by grafting self-blocked G-quadruplex DNAzymes to the substrates of metal ion-triggered DNA/RNA-cleaving DNAzymes [J]. Biosens Bioelectron, 2012, 38 (1): 331-336
55 Tian Y, Wang Y, Xu Y, Liu Y, Li D, Fan CH. A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: a combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction [J]. Sci China Chem, 2015, 58 (3): 514-518
56 Li C, Dai P, Rao X, Shao L, Cheng G, He P, Fang Y. An ultra-sensitive colorimetric Hg2+-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease [J]. Talanta, 2015, 132: 463-468
57 Park JW, Lee SJ, Ren S, Lee S, Kim S, Laurell T. Acousto-microfluidics for screening of ssDNA aptamer [J]. Sci Rep, 2016, 6: 1-9

相似文献/References:

[1]李霞,张丹,沈飞,等.4种固定食用菌加工废弃物吸附剂对水中重金属Hg2+的吸附[J].应用与环境生物学报,2017,23(05):879.[doi:10.3724/SP.J.1145.2016.11035]
 LI Xia,ZHANG Dan*,SHENG Fei,et al.Biosorption of mercury (Hg2+) from water by immobilized residues from four types of edible mushroom[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):879.[doi:10.3724/SP.J.1145.2016.11035]

更新日期/Last Update: 2017-12-25