|本期目录/Table of Contents|

[1]秦丽娟,高瑛,陆信曜,等.产甘油假丝酵母甘油分解代谢CgGCY1、gGCY2和CgDAK基因的克隆、敲除及其功能[J].应用与环境生物学报,2017,23(06):999-1005.[doi:10.3724/SP.J.1145.2017.01017]
 QIN Lijuan,GAO Ying,et al.Cloning, deletion, and function of genes involved in the glycerol catabolism pathway of Candida glycerinogenes[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):999-1005.[doi:10.3724/SP.J.1145.2017.01017]
点击复制

产甘油假丝酵母甘油分解代谢CgGCY1、gGCY2和CgDAK基因的克隆、敲除及其功能()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
999-1005
栏目:
微生物资源发掘与生物合成专栏论文
出版日期:
2017-12-25

文章信息/Info

Title:
Cloning, deletion, and function of genes involved in the glycerol catabolism pathway of Candida glycerinogenes
作者:
秦丽娟 高瑛 陆信曜 宗红 诸葛斌 方慧英 宋健
1江南大学糖化学与生物技术教育部重点实验室 无锡 214122 2江南大学生物工程学院,工业生物技术教育部重点实验室,工业微生物研究中心 无锡 214122 3江南大学化学与材料工程学院 无锡 214122
Author(s):
QIN Lijuan1 2 GAO Ying2 LU Xinyao2 ZONG Hong2 ZHUGE Bin1 2** FANG Huiying1 2 & SONG Jian3
1 Key Laboratory of Carbohydrate Chemisty and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China 2 Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China 3 School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
关键词:
产甘油假丝酵母甘油分解代谢甘油脱氢酶二羟丙酮激酶
Keywords:
Candida glycerinogenes catabolism of glycerol glycerol dehydrogenase dihydroxyacetone kinase
分类号:
Q786 : Q939.97
DOI:
10.3724/SP.J.1145.2017.01017
摘要:
产甘油假丝酵母(Candida glycerinogenes)能够利用甘油大量生长菌体而无有机酸、醇等代谢物积累,是潜在的优良宿主细胞. 为了解C. glycerinogenes甘油分解代谢途径,成功克隆得到二羟基丙酮(DHA)途径的编码基因CgGCY1、CgGCY2和CgDAK. 利用“Ura-Blaster”敲除盒分别构建的缺失突变菌Cggcy1?/gcy2?和Cgdak?均不能在甘油培养基中生长. qRT-PCR及酶活测定结果显示,与葡萄糖培养相比,甘油培养下细胞通过强化糖异生、HMP途径积累生物量,下调EMP途径和副产物合成关键酶表达以弱化有机酸、醇的合成,同时上调TCA循环以补偿EMP途径下调带来的能量和还原力不足,使得生物量提高24.5%而不积累有机酸、醇等代谢物. 以甘油为共底物进行木糖发酵,木糖醇产量和转化率达到39.4 g/L和89%,与葡萄糖为共底物相比分别提高了79%和32.8%. 本研究表明C. glycerinogenes甘油分解代谢仅依赖于DHA途径,以甘油为共底物更有利于木糖醇的合成和转化;结果可为代谢改造C. glycerinogenes以甘油为共底物合成高附加值化合物打下基础. (图8 表3 参21)
Abstract:
Candida glycerinogenes is a potentially valuable cell factory that can utilize glycerol as a carbon source to generate high-grade biomass without accumulation of organic acids and alcohol. To understand glycerol catabolism in C. glycerinogenes, the key genes involved in the dihydroxyacetone (DHA) pathway were cloned. The deficient mutants Cggcy1?/gcy2? and Cgdak? were unable to grow on the glycerol-based medium, indicating that glycerol catabolism in C. glycerinogenes is solely dependent on the DHA pathway. qRT-PCR and enzyme activity assays showed that when cells were cultivated with glycerol as the sole carbon source, the gluconeogenesis and pentose phosphate (HMP) pathways were upregulated to generate the cell skeleton, the Embden-Meyerhof (EMP) and by-product synthesis pathways were downregulated to reduce the production of organic acids and alcohol, and the tricarboxylic acid (TCA) cycle was upregulated to compensate for the loss of reducing power and energy resulting from the reduced EMP pathway activity. These changes increased biomass production by 25% without accumulation of organic acids and alcohol. When cells were cultivated with glycerol and xylose as co-substrates, the titer and conversion rate of xylitol were 39.4 g/L and 89%, respectively. In comparison with cells cultivated with xylose and glucose as co-substrates, this titer and conversion were 1.79 and 1.32-fold higher, respectively. These results suggest that the use of glycerol as a co-substrate can promote the titer and conversion rate of xylitol. This study provides a valuable insight into the production of high-value chemicals by engineered C. glycerinogenes using glycerol as a co-substrate.

参考文献/References:

1 Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes [J]. Appl Microbiol Biot, 2001, 55 (6): 686-692
2 Pavlik P, Simon M, Schuster T, Ruis H. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization [J]. Curr Genet, 1993, 24 (1): 21-25
3 R?nnow B, Kielland-Brandt MC. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae [J]. Yeast, 1993, 9 (10): 1121-1130
4 Jung JY, Kim TY, Ng CY, Oh MK. Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling [J]. J Appl Microbiol, 2012, 113 (6): 1468-1478
5 Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1. 4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway [J]. J Biol Chem, 1997, 272: 5544-5554
6 Gancedo C, Llobell A, Ribas JC, Luchi F. Isolation and characterization of mutants from Schyzosaccharomyces pombe defective in glycerol catabolism [J]. Eur J Biochem, 1986, 159 (1): 171-174
7 Matsuzawa T, Hara F, Tohda H, Uemura H, Takegawa K. Promotion of glycerol utilization using ethanol and 1-propanol in Schizosaccharomyces pombe [J]. Appl Microbiol Biotechnol, 2012, 95 (2): 441-449
8 Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamatsu M, Takahashi H, Imaeda T. Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis [J]. Appl Microbiol Biotechnol, 2010, 87 (5): 1841-1853
9 Hao J, Zhuge B, Hong Z, Lu XY, Fang HY, Zhuge J. Role of CgHOG1 in stress responses and glycerol overproduction of Candida glycerinogenes [J]. Curr Microbiol, 2016, 73 (6): 1-7
10 Chen XZ, Fang HY, Rao ZM, Shen W, Zhuge B, Zhuge J, Wang ZX. An efficient genetic transformation method for glycerol producer Candida glycerinogenes [J]. Microbiol Res, 2008, 163 (5): 531-537
11 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72 (1-2): 248-254
12 Matsuzawa T, Ohashi T, Hosomi A, Tanaka N, Tohda H, Takegawa K. The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe [J]. Appl Microbiol Biot, 2010, 87 (2): 715-727
13 Chen X, Fang H, Rao Z, Shen W, Zhuge B, Wang ZX, Zhuge J. Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer [J]. FEMS Yeast Res, 2008, 8 (5): 725-734
14 Postma E, Verduyn C, Scheffers WA, Vandjken JP. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae [J]. Appl Environ Microb, 1989, 55 (2): 468-477
15 Dong X, Fan Y, Zhang H, Zhong Y, Yang Y, Miao J, Hua S. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity [J]. Int J Biol Macromol, 2016, 86: 155-161
16 杜星星, 诸葛斌, 陆信曜, 郭新坤, 方慧英, 宗红, 宋健. budC缺失对克雷伯氏菌联产3-羟基丙酸和1,3-丙二醇的影响[J]. 应用与环境生物学报, 2014, 20 (3): 371-376 [Du XX, Zhuge B, Lu XY, Guo XK, Fang HY, Zong H, Song J. Effect of budC deficiency on coproduct 3-hydroxypropionic acid and 1,3-propandediol by Klebsiella pneumoniae [J]. Chin J Appl Environ Biol, 2014, 20 (3): 371-376]
17 Molin M, Norbeck J, Blomberg A. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone [J]. J Biol Chem, 2003, 278 (3): 1415-1423
18 Ji H, Lu XY, Wang CY, Zong H, Fang HY, Sun J, Zhuge J, Zhuge B. Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes [J]. Curr Microbiol, 2014, 69 (6): 909-914
19 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCTmethod [J]. Methods, 2001, 25 (4): 402-408
20 Molin M, Pilon M, Blomberg A. Dihydroxyacetone-induced death is accompanied by advanced glycation endproduct formation in selected proteins of Saccharomyces cerevisiae and Caenorhabditis elegans [J]. Proteomics, 2007, 7 (20): 3764-3774
21 Babel W, Hofmann KH. The relation between the assimilation of methanol and glycerol in yeasts [J]. Arch Microbiol, 1982, 132 (2): 179-184

相似文献/References:

[1]丁小云,诸葛斌,方慧英,等.产甘油假丝酵母补料发酵中的甘油合成衰减[J].应用与环境生物学报,2012,18(05):791.[doi:10.3724/SP.J.1145.2012.00791]
 DING Xiaoyun,ZHUGE Bin,FANG Huiying,et al.Glycerol Synthesis Attenuation of Candida glycerinogenes in Fed-batch Fermentation[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):791.[doi:10.3724/SP.J.1145.2012.00791]
[2]郑昌欣,诸葛斌,陆信曜,等.渗透压对产甘油假丝酵母磷酸果糖激酶和6-磷酸葡萄糖脱氢酶的调控[J].应用与环境生物学报,2017,23(01):123.[doi:10.3724/SP.J.1145.2016.02002]
 ZHENG Changxin,ZHUGE Bin,et al.Effects of osmostress on phosphofructokinase and 6-phosphate glucose dehydrogenase of Candida glycerinogenes[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):123.[doi:10.3724/SP.J.1145.2016.02002]
[3]李倩倩,王燕,诸葛斌,等.产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响[J].应用与环境生物学报,2017,23(06):1006.[doi:10.3724/SP.J.1145.2017.01031]
 LI Qianqian,WANG Yan,et al.Effect of overexpressing transcription factors of Candida glycerinogenes on acid tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1006.[doi:10.3724/SP.J.1145.2017.01031]

更新日期/Last Update: 2017-12-25