1 Coninck HD, Benson SM. Carbon dioxide capture and storage: issues and prospects [J]. Annu Rev Env Resour, 2014, 39 (39): 243-270 2 Elmekawy A, Hegab HM,Mohanakrishna G, Elbaz AF, Bulut M, Pant D. Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization [J]. Bioresource Technol, 2016, 215: 357-370 3 Nowak DJ, Crane DE. Carbon storage and sequestration by urban trees in the USA [J]. Environ Pollut, 2002, 116 (3): 381-389 4 Prakash GKS, Viva FA, Olah GA. Electrochemical reduction of CO2 over Sn-Nafion ?; coated electrode for a fuel-cell-like device [J]. J Power Sources, 2012, 223: 68-73 5 Wu JCS, Wu TH, Chu T, Huang H, Tsai D. Application of optical-fiber photoreactor for CO2 photocatalytic reduction [J]. Top Catal, 2008, 47 (3): 131-136 6 Karelovic A, Bargibant A, Fernández C, Ruiz P. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions [J]. Catal Today, 2012, 197 (1): 109-118 7 Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science, 2012, 337 (6095): 686-690 8 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958 9 Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges [J]. Water Res, 2014, 56 (3): 11-25 10 蒋永, 苏敏, 张尧, 陶勇, 李大平. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013, 19 (5): 833-837 [Jiang Y, Su M, Zhang Y, Tao Y, Li DP. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2013, 19 (5): 833-837] 11 Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures [J]. Environ Sci Technol, 2009, 44 (1): 513-517 12 Rozendal RA, Leone E, Keller J, Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system [J]. Electrochem Commun, 2009, 11 (9): 1752-1755 13 Kim HY, Choi I, Sang HA, Ahn SH, Yoo SJ, Han J, Kim J, Park H, Jang JH, Kim SK. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid [J]. Int J Hydrogen Energ, 2014, 39 (29): 16506-16512 14 Huang L, Jiang L, Wang Q, Quan X, Yang JH, Chen LJ. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells [J]. Chem Eng J, 2014, 253 (3): 281-290 15 张尧, 张闻杰, 蒋永, 苏敏, 陶勇, 李大平. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J]. 应用与环境生物学报, 2014, 20 (2): 174-178 [Zhang Y, Zhang WJ, Jiang Y, Su M, Tao Y, Li DP. Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2014, 20 (2): 174-178] 16 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958 17 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresource Technol, 2010, 101 (9): 3085-3090 18 Zhen G, Kobayashi T, Lu X, Xu K. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode [J]. Bioresource Technol, 2015, 186: 141-148 19 Yang HY, He CS, Li L, Zhang J, Shen JY, Mu Y, Yu HQ. Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors [J]. Sci Rep, 2016, 6: 27243 20 Siegert M, Yates MD, Call DF, Zhu XP, Spormann A, Logan BE. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis [J]. Acs Sustain Chem Eng, 2014, 2 (4): 910-917 21 Jiang Y, Su M, Zhang Y, Zhan GQ, Tao Y, Li DP. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energ, 2013, 38 (8): 3497-3502 22 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24 (1): 157-162 [Cheng LX, Xiao Y, Zhao F. Biocathode in microbial fuel cells [J]. Prog Chem, 2012, 24 (1): 157-162] 23 苏敏, 蒋永, 张尧, 高平, 李大平. 生物电化学耦合H2还原CO2合成简单有机物[J]. 应用与环境生物学报, 2013, 19 (5): 827-832 [Su M, Jiang Y, Zhang Y, Gao P, Li DP. Coupled bioelectrochemical system for reducing CO2 to simple organic compounds in the presence of H2 [J]. Chin J Appl Environ Biol, 2013, 19 (5): 827-832] 24 Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K. A logical data representation framework for electricity-driven bioproduction processes [J]. Biotechnol Adv, 2015, 33 (6): 736-744 25 李阳. 微生物电化学耦合系统强化处理偶氮染料废水的研究[D]. 合肥: 中国科学技术大学, 2016 [Li Y. Microbial clectrochemical coupled system for enhancemnet of azo dye decolorization from wastewater [D]. Hefei: University of Science and Technology of China, 2016] 26 Feng YH, Zhang YB, Chen S, Quan X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode [J]. Chem Eng J, 2015, 259: 787-794 27 Logan BE, Call D, Cheng SA, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter [J]. Environ Sci Technol, 2008, 42 (23): 8630-8640 28 Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions [J]. Environ Sci Technol, 2014, 48 (15): 8911-8918 29 Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells [J]. Bioresource Technol, 2014, 175C: 68-74 30 Bajracharya S, Vanbroekhoven K, Buisman CJ, Pant D, Strik DP. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide [J]. Environ Sci Pollut R, 2016, 23 (22): 22292 31 刘文宗. 有机废水微生物电解产氢研究及电极微生物功能解析[D]. 哈尔滨: 哈尔滨工业大学, 2011 [Liu WZ. Hydrogen generation from organic waste water in microbial electrolysis cells and function analysis of anodophilic communities [D]. Harbin: Harbin Institute of Technology, 2011] 32 Wang HP, Jiang SC, Wang Y, Xiao B. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater [J]. Bioresour Technol, 2013, 138 (6): 109-116 33 孙秀云, 沈锦优, 王连军, 李健生, 韩卫清. 2,4,6-三硝基苯酚降解菌的筛选和表征[J]. 兵工学报, 2011, 32 (6): 646-650 [Sun XY, Shen JY, Wang LJ, Li JS, Han WQ. Isolation and characterization of 2, 4, 6-trinitrophenol degrading isolates [J]. Acta Armamentarii, 2011, 32 (6): 646-650] 34 Zhen G, Lu X, Kobayashi T, Kumar G, Xu K. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF) [J]. Chem Eng J, 2016, 284: 1146-1155 35 Lovley DR, Nevin KP. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity [J]. Curr Opin Biotech, 2013, 24 (3): 385-390 36 Narihiro T, Sekiguchi Y. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea [J]. Microb Biotechnol, 2011, 4 (5): 585-602
[1]蒋永,苏敏,张尧,等.生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J].应用与环境生物学报,2013,19(05):833.[doi:10.1088/1748-9326/5/3/034011]
JIANG Yong,SU Min,ZHANG Yao,et al.Simultaneous Production of Methane and Acetate from Carbon Dioxide with Bioelectrochemical Systems[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):833.[doi:10.1088/1748-9326/5/3/034011]
[2]张尧,张闻杰,蒋永,等.生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J].应用与环境生物学报,2014,20(02):174.[doi:10.3724/SP.J.1145.2014.00174]
ZHANG Yao,ZHANG Wenjie,JIANG Yong,et al.Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):174.[doi:10.3724/SP.J.1145.2014.00174]
[3]杨早,朱单,陈槐,等.季节冻融对泥炭沼泽碳排放的影响研究进展[J].应用与环境生物学报,2020,26(05):1290.[doi: 10.19675/j.cnki.1006-687x.2019.10038]
YANG Zao,ZHU Dan,et al.Research advances in the influence of seasonal freeze-thaw on carbon emissions from peatlands[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1290.[doi: 10.19675/j.cnki.1006-687x.2019.10038]