|本期目录/Table of Contents|

[1]鲍白翎,杨厚云,苏馈足,等.微生物电合成系统还原二氧化碳产甲烷的电势依赖性[J].应用与环境生物学报,2017,23(06):968-973.[doi:10.3724/SP.J.1145.2017.01008]
 BAO Bailing,YANG Houyun,et al.Influence of cathodic potential on methane production from CO2 in a microbial electrosynthesis system[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):968-973.[doi:10.3724/SP.J.1145.2017.01008]
点击复制

微生物电合成系统还原二氧化碳产甲烷的电势依赖性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
968-973
栏目:
微生物资源发掘与生物合成专栏论文
出版日期:
2017-12-25

文章信息/Info

Title:
Influence of cathodic potential on methane production from CO2 in a microbial electrosynthesis system
作者:
鲍白翎 杨厚云 苏馈足 穆杨
1合肥工业大学土木与水利工程学院 合肥 230009 2中国科学技术大学化学与材料科学学院 合肥 230026
Author(s):
BAO Bailing1 2 YANG Houyun2 SU Kuizu1** & MU Yang2**
1 School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China 2 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
关键词:
微生物电合成系统(MES)二氧化碳甲烷阴极电势Methanobacterium
Keywords:
microbial electrosynthesis system (MES) carbon dioxide methane cathode potential Methanobacterium
分类号:
TM911.45 : X172
DOI:
10.3724/SP.J.1145.2017.01008
摘要:
二氧化碳(CO2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO2生产能源物质是一种新兴技术. 在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO2产甲烷的影响. 当阴极电势从-0.70 V降低到-0.90 V vs Ag/AgCl时,MES产甲烷的量和速率都在增加,最大的产甲烷量和速率分别达到了0.265 mol/m2和0.025 mmol/h. 与此同时,MES的电流密度从0.002 A/m2增加到0.18 A/m2,阴极产甲烷的库伦效率在49%和90%之间. 当阴极电势更负时,MES阴极几乎不产甲烷. 扫描电镜分析(SEM)表明,有多种不同形态的微生物吸附在阴极碳毡上,它们的形态主要呈杆状和球状. 16S rDNA测序分析表明Methanobacterium是MES阴极生物膜上优势的产甲烷菌. 本研究表明,微生物电合成系统还原CO2产甲烷的阴极电势必须控制在适当的范围内,才能高效地还原CO2产甲烷. (图8 表1 参36)
Abstract:
Carbon dioxide utilization has been an important research topic in recent years. The use of bioelectrochemical systems capable of reducing CO2 to produce energy is an emerging technology. This study evaluated the effect of cathodic potential on methane production from CO2 in microbial electrosynthesis systems (MESs) with a mixed-culture biocathode. As the cathodic potential was decreased from ?0.70 V to ?0.90 V vs. Ag/AgCl, the yield and rate of methane production increased; the maximum amount and highest rate of methane production in MESs reached up to 0.265 mol/m2 and 0.025 mmol/h, respectively. The current density of the MES increased markedly, from 0.002 A/m2 to 0.18 A/m2, while the coulombic efficiency of methane production in the cathode increased from 49% to 90%. When the cathodic potential was more negative, the cathode of the MES produced negligible amounts of methane. Scanning electron microscope (SEM) confirmed that a variety of microorganisms were attached to the cathode carbon felt, and the morphologies of these microorganisms were mainly in the shapes of rods and spheres. 16S rDNA sequencing analysis revealed that Methanobacterium was the predominant methanogen in the biofilm on the cathode of the MES. These results suggest that the cathodic potential in MESs must be controlled within an appropriate range, to efficiently produce methane from CO2.

参考文献/References:

1 Coninck HD, Benson SM. Carbon dioxide capture and storage: issues and prospects [J]. Annu Rev Env Resour, 2014, 39 (39): 243-270
2 Elmekawy A, Hegab HM,Mohanakrishna G, Elbaz AF, Bulut M, Pant D. Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization [J]. Bioresource Technol, 2016, 215: 357-370
3 Nowak DJ, Crane DE. Carbon storage and sequestration by urban trees in the USA [J]. Environ Pollut, 2002, 116 (3): 381-389
4 Prakash GKS, Viva FA, Olah GA. Electrochemical reduction of CO2 over Sn-Nafion ?; coated electrode for a fuel-cell-like device [J]. J Power Sources, 2012, 223: 68-73
5 Wu JCS, Wu TH, Chu T, Huang H, Tsai D. Application of optical-fiber photoreactor for CO2 photocatalytic reduction [J]. Top Catal, 2008, 47 (3): 131-136
6 Karelovic A, Bargibant A, Fernández C, Ruiz P. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions [J]. Catal Today, 2012, 197 (1): 109-118
7 Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science, 2012, 337 (6095): 686-690
8 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958
9 Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges [J]. Water Res, 2014, 56 (3): 11-25
10 蒋永, 苏敏, 张尧, 陶勇, 李大平. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013, 19 (5): 833-837 [Jiang Y, Su M, Zhang Y, Tao Y, Li DP. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2013, 19 (5): 833-837]
11 Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures [J]. Environ Sci Technol, 2009, 44 (1): 513-517
12 Rozendal RA, Leone E, Keller J, Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system [J]. Electrochem Commun, 2009, 11 (9): 1752-1755
13 Kim HY, Choi I, Sang HA, Ahn SH, Yoo SJ, Han J, Kim J, Park H, Jang JH, Kim SK. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid [J]. Int J Hydrogen Energ, 2014, 39 (29): 16506-16512
14 Huang L, Jiang L, Wang Q, Quan X, Yang JH, Chen LJ. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells [J]. Chem Eng J, 2014, 253 (3): 281-290
15 张尧, 张闻杰, 蒋永, 苏敏, 陶勇, 李大平. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J]. 应用与环境生物学报, 2014, 20 (2): 174-178 [Zhang Y, Zhang WJ, Jiang Y, Su M, Tao Y, Li DP. Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2014, 20 (2): 174-178]
16 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958
17 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresource Technol, 2010, 101 (9): 3085-3090
18 Zhen G, Kobayashi T, Lu X, Xu K. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode [J]. Bioresource Technol, 2015, 186: 141-148
19 Yang HY, He CS, Li L, Zhang J, Shen JY, Mu Y, Yu HQ. Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors [J]. Sci Rep, 2016, 6: 27243
20 Siegert M, Yates MD, Call DF, Zhu XP, Spormann A, Logan BE. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis [J]. Acs Sustain Chem Eng, 2014, 2 (4): 910-917
21 Jiang Y, Su M, Zhang Y, Zhan GQ, Tao Y, Li DP. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energ, 2013, 38 (8): 3497-3502
22 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24 (1): 157-162 [Cheng LX, Xiao Y, Zhao F. Biocathode in microbial fuel cells [J]. Prog Chem, 2012, 24 (1): 157-162]
23 苏敏, 蒋永, 张尧, 高平, 李大平. 生物电化学耦合H2还原CO2合成简单有机物[J]. 应用与环境生物学报, 2013, 19 (5): 827-832 [Su M, Jiang Y, Zhang Y, Gao P, Li DP. Coupled bioelectrochemical system for reducing CO2 to simple organic compounds in the presence of H2 [J]. Chin J Appl Environ Biol, 2013, 19 (5): 827-832]
24 Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K. A logical data representation framework for electricity-driven bioproduction processes [J]. Biotechnol Adv, 2015, 33 (6): 736-744
25 李阳. 微生物电化学耦合系统强化处理偶氮染料废水的研究[D]. 合肥: 中国科学技术大学, 2016 [Li Y. Microbial clectrochemical coupled system for enhancemnet of azo dye decolorization from wastewater [D]. Hefei: University of Science and Technology of China, 2016]
26 Feng YH, Zhang YB, Chen S, Quan X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode [J]. Chem Eng J, 2015, 259: 787-794
27 Logan BE, Call D, Cheng SA, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter [J]. Environ Sci Technol, 2008, 42 (23): 8630-8640
28 Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions [J]. Environ Sci Technol, 2014, 48 (15): 8911-8918
29 Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells [J]. Bioresource Technol, 2014, 175C: 68-74
30 Bajracharya S, Vanbroekhoven K, Buisman CJ, Pant D, Strik DP. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide [J]. Environ Sci Pollut R, 2016, 23 (22): 22292
31 刘文宗. 有机废水微生物电解产氢研究及电极微生物功能解析[D]. 哈尔滨: 哈尔滨工业大学, 2011 [Liu WZ. Hydrogen generation from organic waste water in microbial electrolysis cells and function analysis of anodophilic communities [D]. Harbin: Harbin Institute of Technology, 2011]
32 Wang HP, Jiang SC, Wang Y, Xiao B. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater [J]. Bioresour Technol, 2013, 138 (6): 109-116
33 孙秀云, 沈锦优, 王连军, 李健生, 韩卫清. 2,4,6-三硝基苯酚降解菌的筛选和表征[J]. 兵工学报, 2011, 32 (6): 646-650 [Sun XY, Shen JY, Wang LJ, Li JS, Han WQ. Isolation and characterization of 2, 4, 6-trinitrophenol degrading isolates [J]. Acta Armamentarii, 2011, 32 (6): 646-650]
34 Zhen G, Lu X, Kobayashi T, Kumar G, Xu K. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF) [J]. Chem Eng J, 2016, 284: 1146-1155
35 Lovley DR, Nevin KP. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity [J]. Curr Opin Biotech, 2013, 24 (3): 385-390
36 Narihiro T, Sekiguchi Y. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea [J]. Microb Biotechnol, 2011, 4 (5): 585-602

相似文献/References:

[1]蒋永,苏敏,张尧,等.生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J].应用与环境生物学报,2013,19(05):833.[doi:10.1088/1748-9326/5/3/034011]
 JIANG Yong,SU Min,ZHANG Yao,et al.Simultaneous Production of Methane and Acetate from Carbon Dioxide with Bioelectrochemical Systems[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):833.[doi:10.1088/1748-9326/5/3/034011]
[2]张尧,张闻杰,蒋永,等.生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J].应用与环境生物学报,2014,20(02):174.[doi:10.3724/SP.J.1145.2014.00174]
 ZHANG Yao,ZHANG Wenjie,JIANG Yong,et al.Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):174.[doi:10.3724/SP.J.1145.2014.00174]

更新日期/Last Update: 2017-12-25