|本期目录/Table of Contents|

[1]李霞,张丹,沈飞,等.4种固定食用菌加工废弃物吸附剂对水中重金属Hg2+的吸附[J].应用与环境生物学报,2017,23(05):879-885.[doi:10.3724/SP.J.1145.2016.11035]
 LI Xia,ZHANG Dan*,SHENG Fei,et al.Biosorption of mercury (Hg2+) from water by immobilized residues from four types of edible mushroom[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):879-885.[doi:10.3724/SP.J.1145.2016.11035]
点击复制

4种固定食用菌加工废弃物吸附剂对水中重金属Hg2+的吸附()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年05期
页码:
879-885
栏目:
研究论文
出版日期:
2017-10-25

文章信息/Info

Title:
Biosorption of mercury (Hg2+) from water by immobilized residues from four types of edible mushroom
作者:
李霞张丹沈飞青会杨洋
1中国科学院水利部成都山地灾害与环境研究所 成都 610041 2四川省地质矿产勘查开发局九零九水文地质工程地质队 绵阳 621000 3中国科学院大学 北京 100049 4四川省烟草公司宜宾市公司 宜宾 644000
Author(s):
LI Xia1 ZHANG Dan1* SHENG Fei2 QING Hui1 3 & YANG Yang4
1 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China 2 Hydrogeology and Engineering Geological Team No. 909, Bureau of Geology & Mineral Resources of Sichuan Province, Mianyang 621000, China 3 University of Chinese Academy of Science, Beijing 100049, China 4 Yibin Branch Company, Sichuan Tobacco Company, Yibin, 644000, China
关键词:
生物吸附Hg2+食用菌废弃物Lagrange动力学模型Langmuir热力学模型
Keywords:
biosorption Hg2+ edible mushroom residue Lagrange kinetic models Langmuir isotherm model
分类号:
X703:X792
DOI:
10.3724/SP.J.1145.2016.11035
摘要:
将金针菇(Flammulina velutipes)、毛木耳(Auricularia polytricha)、杏鲍菇(Pleurotus eryngii)和平菇(Pleurotus ostreatus)等4种食用菌加工废弃物用聚乙烯醇—海藻酸钠(PVA-SA)固定为吸附小球,研究其对Hg2+的吸附效果、影响因素及吸附机理. 结果表明,4种吸附剂对Hg2+的最大吸附率金针菇(81.65%)>毛木耳(59.89%)>平菇(52.52%)>杏鲍菇(39.77%),吸附最适pH值为6;比较伪一级动力学模型方程、伪二级动力学模型方程、Elovich模型方程和颗粒内扩散模型方程对吸附过程的拟合结果发现,伪二级动力学模型更适合描述4种吸附剂对Hg2+的吸附过程,化学吸附过程为限速步骤,对Hg2+的吸附速率杏鲍菇>平菇>毛木耳>金针菇,吸附的前30 min为快速吸附过程,经过120 min左右达到吸附平衡;Langmuir热力学模型对吸附过程的拟合效果好,主要为单层吸附. 扫描电镜观察(SEM)和红外光谱(FTIR)分析显示,4种吸附剂细胞表面的活性基团与Hg2+的离子交换、络合等化学反应是其吸附Hg2+的主要机理. 固定金针菇加工废弃物对青衣江流域水样低浓度Hg2+的去除率为69.35%,对低浓度重金属的生物去除有一定的实际应用价值. (图6 表3 参39)
Abstract:
To identify a comparatively inexpensive, practical biosorption material for the removal of Hg2+ from water, poly(vinyl alcohol)-Na-alginate (PVA-SA) was used to immobilize residues of Flammulina velutipes, Auricularia polytricha, Pleurotus eryngii, and Pleurotus ostreatus for preparing adsorbents. The effects of initial pH and contact time on Hg2+-removal behavior were evaluated, and the adsorption mechanism was investigated further. The results showed that the maximum biosorption ratio of the immobilized residues of F. velutipes, A. polytricha, P. eryngii, and P. ostreatus were 81.6%, 59.9%, 39.8%, and 52.5%, respectively. We compared the pseudo-first order kinetics, pseudo-second order kinetics, and Elovich and intraparticle diffusion kinetic model, which were used to explain Hg2+ adsorption by four adsorbents. It was proved that the pseudo-second order kinetic model was the most suitable model to characterize Hg2+ adsorption. Chemisorption was the rate-limiting step in the sorption process, and Hg2+ uptake reached 53.8%–74.6% of the total in the initial period of 30 min, and was completed in 120 min. The Langmuir isotherm model fit well with the adsorption by the analyzed adsorbents, which indicated that monolayer adsorption was dominant. Scanning electron microscopy (SEM) and fourier-transform?infrared (FTIR) analyses of F. velutipes demonstrated that ion exchange and combination of Hg2+ with the functional groups in the cell wall of F. velutipes were the major adsorption mechanisms. Hg2+ present in water could be efficiently removed by F. velutipes residue, with a removal ratio of 69.35%, which served an effective biological adsorbent for Hg2+ at low concentration from water.

参考文献/References:

1 Mutter J, Naumann J, Sadaghiani C, Walach H, Drasch G. Amalgam studies: disregarding basic principles of mercury toxicity [J]. Intern J Hygiene Environ Health, 2004, 207 (4): 391-397.
2 曾少军, 曾凯超, 杨来. 中国汞污染治理的现状与策略研究[J]. 中国人口?资源与环境, 2014, 24 (3): 92-96 [Zeng SJ, Zeng KC, Yang L. Study on situation and strategy of mercury pollution of China [J]. China Popul Resour Environ, 2014, 24 (3): 92-96]
3 许旭萍, 沈雪贤, 陈宏靖. 球衣菌吸附重金属Hg2+的理化条件及其机理研究[J]. 环境科学学报, 2006, 26 (3): 453 -458 [Xu XP, Shen XX, Chen HJ. Study on biosorption mechanism and physiochemical conditions of Hg2+ by Sphaerotilus natans [J]. J Environ Sci, 2006, 26 (3): 453 -458]
4 孟祥和, 胡国飞. 重金属废水处理[M]. 北京: 化学工业出版社, 2000: 14-15 [Meng XH, Hu GF. Heavy Metal Wastewater Treatment. Beijing: Chemical Industry Press, 2000: 14-15]
5 Volesky B. Detoxification of metal-bearing effluents: biosorption for the next century [J]. Hydrometallurgy, 2000, 59 (2-3): 203-216
6 魏德洲, 朱一民, 周东琴. Norcardia Amarae菌吸附Hg2+的研究[J]. 东北大学学报(自然科学版), 2003, 24 (9): 903-906 [Wei DZ, Zhu YM, Zhou DQ. Biosorption of Hg2+ by Norcardia amarae [J]. J NE Univ (Nat Sci), 2003, 24 (9): 903-906]
7 罗建中, 张新霞, 洪建军, 乔庆霞. 固定化微生物技术在强化降解废水有毒物质过程中的研究与应用[J]. 环境保护, 2002 (9): 18-21 [Luo JZ, Zhang XX, Hong JJ, Qiao QX. Enhancing degradation process of toxic wastewater with immobilized microtechnique [J]. Environ Prot, 2002 (9): 18-21]
8 Singh SK, Bansal A, Jha MK, Dey A. An integrated ap-proach to remove Cr (VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater [J]. Bioresour Technol, 2012, 104: 257-265
9 王建龙, 施汉昌. 聚乙烯醇包埋固定化微生物的研究及进展[J]. 工业微生物, 1998, 8 (2): 35-38 [Wang JL, Shi HC. Advances in research on PVA immobilized microorganisms [J]. Ind Microbiol, 1998, 8 (2): 35-38
10 马培, 张丹, 何海江. 不同材料固定香菇废弃菌柄对铅和镉的吸附[J]. 环境科学与技术, 2010, 33 (10): 1-4 [Ma P, Zhang D, He HJ. Comparison among immobilized Lentinus deodes residue of different materials on Pb2+ and Cd2+ biosorption [J]. Environ Sci Technol, 2010, 33 (10): 1-4]
11 Garg UK, Kaur MP, Garg VK, Sud D. Removal of hexavalent chromium from aqueous solutions by agricultural waste biomass [J]. J Hazard Mat, 2007, 140: 60-68.
12 楼子墨, 王卓行, 周晓馨, 傅瑞琪, 刘榆, 徐新华. 废弃菌糠资源化过程中的成分变化规律及其环境影响[J]. 环境化学, 2016, 37 (1): 397-402 [Lou ZM, Wang ZX, Zhou XX, Fu RQ, Liu Y, Xu AH. Compositional variation of spent mushroom substrate during cyclic utilization and its environmental impact [J]. Environ Sci, 2016, 37 (1): 397-402]
13 马卫东, 顾国维, Yu Q, Kaewsarn P. 海洋巨藻(Durvilaea potatorum)生物吸附剂对Hg2+的吸附动力学研究[J]. 应用与环境生物学报, 2001, 7 (4): 344-347 [Ma WD, Gu GW, Yu Q, Kaewsarn P. Study on Hg2+ adsorption kinetics of biosorbent made from marine alga Durvillaea potatorum [J]. Chin J Appl Environ Biol, 2001, 7 (4): 344-347]
14 张梅华, 孙璐, 朱彤, 王昕竑, 蒋继宏, 赵盛开. 耐汞真菌的分离及其对废水中Hg(Ⅱ)吸附的研究[J]. 环境科学与技术, 2015, 38 (12Q): 1-6 [Zhang MH, Sun L, Zhu T, Wang XH, Jiang JH, Zhao SK. Isolation of a mercury-resistant fungal strain and its aquatic bio-sorption behavior of Hg (Ⅱ) [J]. Environ Sci Technol, 2015, 38 (12Q): 1-6]
15 马培, 张丹, 何海江. 固定香菇(Lentinus edodes)废弃菌柄对溶液中Cd2+的吸附[J]. 安全与环境学报, 2009, 9 (5): 34-38 [Ma P, Zhang D, He HJ. Biosorption function of Cd (Ⅱ) by immobilized Lentinus edodes residue [J]. J Saf Environ, 2009, 9 (5): 34-38]
16 李昉泽, 冯丹, 邓惠, 俞花美, 葛成军. 阿特拉津在5种农业土壤中的吸附解吸特性分析[J]. 生态环境学报, 2015, 24 (12): 2056-2061 [Li FZ, Feng D, Deng H, Yu HM, Ge CJ. Adsorption and desorption of atrazine in five agriculture soils [J]. Ecol Environ Sci, 2015, 24 (12): 2056-2061]
17 刘月英, 杜天生, 陈平. 啤酒酵母废菌体吸附Pd2+的物理化学特性[J]. 高等学校化学学报, 2003, 24 (12): 2248-2251 [Liu YY, Du TS, CHEN P, et al. Physio-chemical properties of adsorbing Pd2+ by Saccharomyces cerevisiae waste biomass [J]. Chem Res Chin Univ, 2003, 24 (12): 2248-2251]
18 Fiol N, Villaescusa I, Martinez M, Serarols J. Sorption of Pb (Ⅱ), Ni (Ⅱ), Cu (Ⅱ) and Cd (Ⅱ) from aqueous solution by olive stone waste [J]. Separation Purif Technol, 2006, 50: 132-140
19 程林洁, 林锦美, 段金明, 林建清. 白腐真菌吸附废水中Zn2+ 的影响因素及吸附机理研究[J]. 环境科学与技术, 2012, 35 (12): 71-75 [Cheng LJ, Lin JM, Duan JM, Lin JQ. Influence factors and absorption mechanism of Zn2+ by white-rot fungi [J]. Environ Sci Technol, 2012, 35 (12): 71-75]
20 Ridvan S, Nalan Y, Andil D. Biosoption of cadmium, lead, mercury, and arsenic ions by the fungus penicillium purpurogenum [J]. Separation Sci Technol, 2003, 38 (9): 2039-2053
21 和文祥, 朱铭莪, 张一平. 土壤酶与重金属关系研究现状[J]. 土壤与环境, 2000, 9 (2): 139-142 [He WX, Zhu ME, Zhang YP. Recent advance in relationship between soil enzymes and heavy metals [J]. Soil Environ Sci, 2000, 9 (2): 139-142]
22 Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J. Biosorption of copper (II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution [J]. J Hazardous Mat, 2010, 177 (1-3): 676-682
23 赵盛开, 张梅华, 潘利祥. 一株抗汞真菌的分离纯化及其对含汞废水治理特性的研究[J]. 环境污染与防治, 2016, 38 (3): 56-60 [Zhao SK, Zhang MH, Pan LX. The separation and purification of a mercury-resistant fungal strain and its characteristics for mercury wastewater treatment [J]. Environ Pollut Control, 2016, 38 (3): 56-60]
24 Das SK, Das AR, Guha AK. A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass [J]. Environ Sci Technol, 2007, 41 (24): 8281-8287
25 Ozsoy HD. Biosorptive removal of Hg (Ⅱ) ions by Rhizopus oligosporus produced from corn-processing wastewater [J]. Afr J Biotechnol, 2010, 9 (51): 8783-8790
26 陈丽萍, 司秀荣, 李凌云. 磷酸活化活性炭对Cu2+的吸附特征研究[J]. 生态环境学报, 2011, 20 (2): 353- 358 [Chen LP, Si X R, Ll LY. Adsorption characteristics of Cu2+ onto carbon activation with H3PO4 [J]. Ecol Environ Sci, 2011, 20 (2): 353- 358]
27 丁世敏, 封享华, 汪玉庭, 彭祺. 交联壳聚糖多孔微球对染料的吸附平衡及吸附动力学分析[J]. 分析科学学报, 2005, 21: 127-130 [Ding SM, Feng XH, Wang YT, Peng Q. Equilibrium and kinetic analysis of adsorption for dyestuff by cross-linked chitosan porous microbeads [J]. J Anal Sci, 2005, 21: 127-130]
28 李欣, 谭周亮, 周后珍, 张银莲, 李旭东. 3 种微生物吸附剂对低浓度Cd2+的吸附特性研究[J]. 环境科学与技术, 2011, 34 (12): 7-13 [Li X, Tang ZL, Zhou HZ, Zhang YL, Li XD. Adsorptive capacity and kinetics of Cd2+ with 3 biosorbents [J]. Environ Sci Technol, 2011, 34 (12): 7-13]
29 蒋新宇, 黄海伟, 曹理想, 张仁铎. 毛木耳对Cd2+、Cu2+、Pb2+、Zn2+生物吸附的动力学和吸附平衡研究[J]. 环境科学学报, 2010, 30 (7): 1431- 1438 [Jiang XY, Huang HW, Cao LX, Zhang RD. Kinetics and equilibrium of Cd2+, Cu2+, Pb2+, Zn2+by macrofungus (Auricularia polytricha) biomass [J]. J Environ Sci, 2010, 30 (7): 1431- 1438]
30 刘剑飞, 胡留杰, 廖敦秀, 苏世鸣, 周正科, 张生. 食用菌生物修复重金属污染研究进展[J]. 应用生态学报, 2011, 22 (2): 543-548 [Liu JF, Hu LJ, Liao DX , Su SM, Zhou ZK, Zhang S. Bioremediation of heavy metal pollution by edible fungi: a review [J]. Chin J Appl Ecol, 2011, 22 (2): 543-548]
31 Sari A, Tuzen M. Kinetic and equilibrium studies of biosorption of Pb (Ⅱ) and Cd (Ⅱ) from aqueous solution by macrofungus (Amanita rubescens) biomass [J]. J Hazardous Mat, 2009, 164: 1004-1011
32 Sparks DK. Kineties of soil chemical poreesses [M]. SanDiego: Academic Press, 1989: 39-60
33 王宇, 高宝玉, 岳文文, 徐秀明, 许醒, 潘淑颖. 改性玉米秸秆对水中磷酸根的吸附动力学研究[J]. 环境科学, 2008, 29 (3): 703-708 [Wang Y, Gao BY, Yue WW, Xu MX, Xu X, Pan SY. Adsorption kinetics of phosphate from aqueous solutions onto modified corn residue [J]. Environ Sci, 2008, 29 (3): 703- 708]
34 李欣, 谭周亮, 周后珍, 王璐, 李旭东. 4种微生物吸附剂对低质量浓度Cr (Ⅲ)的吸附性能研究[J]. 安全与环境学报, 2011, 11 (5): 62-68 [Li X, Tan Z L, Zhou H Z, Wang L, Li XD. Study on adsorption capacity of four biosorbents for Cr (Ⅲ) of low concentration [J]. J Saf Environ, 2011, 11 (5): 62-68]
35 Baldrian P. Interaction of heavy metals with white-rot fungi [J]. Enzyme Microbial Technol, 2003, 32 (1): 78-91
36 于颖, 周启星, 王新, 任丽萍. 黑土和棕壤对铜的吸附研究[J]. 应用生态学报, 2003, 14 (5): 761-765 [Yu Y, Zhou QX, Wang X, Ren LP. 2003. Cu adsorption by phaeozem and burazem [J]. Chin J Appl Ecol, 14 (5): 761-765]
37 卢涌泉, 邓振华. 实用红外光谱解析[M]. 北京: 电子工业出版社, 1989: 11-254 [Lu YQ, Deng ZH. Practical Infrared Spectrum Analysis [M]. Beijing: Electronics industry Press, 1989: 11-254]
38 康铸慧, 王 磊, 郑广宏, 周琪. 恶臭假单胞菌Pseudo-monasputida 5-x细胞壁膜系统的Cu2+吸附性能[J]. 环境科学, 2006, 27 (5): 965- 971 [Kang ZH, Wang L, Zhen GH, Zhou Q. Capability of Cu2+ adsorption on cell surface of Pseudomonas putida 5-x [J]. Environ Sci, 2006, 27 (5): 965- 971]
39 孙璐, 张梅华, 魏源送, 朱彤, 王昕竑, 蒋继宏. 真菌菌株XS3-2-5对含锰废水中Mn (Ⅱ)的生物氧化作用[J]. 环境科学与技术, 2015, 38 (10): 88-93 [Sun L, Zhang MH, Wei YS, Zhu T, Wang XH, Jiang JH. Biological oxidation of Mn (Ⅱ) by fungal strain XS3-2-5 for treating wastewater containing Mn (Ⅱ) [J]. Environ Sci Technol, 2015, 38 (10): 88-93]

相似文献/References:

[1]高,蓝,李浩明.表面展示技术在污染环境生物修复中的应用[J].应用与环境生物学报,2005,11(02):256.
 GAO Lan,et al..Applications of cellsurface display technology in bioremediation of polluted environments[J].Chinese Journal of Applied & Environmental Biology,2005,11(05):256.
[2]肖继波,胡勇有.吸附菌HX5对活性艳蓝KN-R的吸附脱色作用[J].应用与环境生物学报,2005,11(06):763.
 XIAO Jibo,et al..Biosorp tive decolorization of Reactive Brilliant Blue KN-R by strain HX5[J].Chinese Journal of Applied & Environmental Biology,2005,11(05):763.
[3]潘响亮,王建龙,张道勇.海藻酸钙固定混合SRB菌群生物吸附Ni2+的动力学[J].应用与环境生物学报,2006,12(05):697.
 PAN Xiangliang,et al..Kinetics of Ni2+ Biosorption by Mixed SRB Population Immobilized in Ca-alginate[J].Chinese Journal of Applied & Environmental Biology,2006,12(05):697.
[4]李亚,刘楠,霍亚鹏,等.基于生物分子识别的水环境Hg2+快速检测新技术研究进展[J].应用与环境生物学报,2017,23(06):1172.[doi: 10.3724/SP.J.1145.2017.01020]
 LI Ya,,et al.Review of novel technologies for rapid detection of Hg2+ in water environment via biological molecular recognition[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1172.[doi: 10.3724/SP.J.1145.2017.01020]

更新日期/Last Update: 2017-10-25