|本期目录/Table of Contents|

[1]吴亭亭,杨暖,刘建,等.单室微生物电解池处理黄水产甲烷[J].应用与环境生物学报,2017,23(05):907-912.[doi:10.3724/SP.J.1145.2016.10012]
 WU Tingting,YANG Nuan,et al.Simultaneous yellow water treatment and methane production using stainless steel single-chamber microbial electrolysis cell[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):907-912.[doi:10.3724/SP.J.1145.2016.10012]
点击复制

单室微生物电解池处理黄水产甲烷()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年05期
页码:
907-912
栏目:
研究论文
出版日期:
2017-10-25

文章信息/Info

Title:
Simultaneous yellow water treatment and methane production using stainless steel single-chamber microbial electrolysis cell
作者:
吴亭亭杨暖刘建张艳艳蒋沁芮李大平
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049 3四川大学生命科学学院 成都 610065
Author(s):
WU Tingting1 2 YANG Nuan1 2 LIU Jian1 3 ZHANG Yanyan1 2 JIANG Qinrui1 2 & LI Daping1**
1 Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 School of Life Sciences, Sichuan University, Chengdu 610065, China
关键词:
单室微生物电解池黄水外加电压COD产甲烷
Keywords:
single-chamber microbial electrolysis cell yellow water applied voltage COD methane production
分类号:
X797:X172
DOI:
10.3724/SP.J.1145.2016.10012
摘要:
为进一步挖掘酿酒副产物黄水的资源化利用空间,构建不锈钢单室微生物电解池(MEC)处理黄水并实现能源回收. 以4%的黄水为基质,考察不同外加电压(0.4 V、0.6 V、0.8 V、1.0 V)对黄水处理过程中化学需氧量(COD)去除、各有机酸降解、甲烷产生及能量平衡等的影响. 结果表明,当外加0.8 V电压时,MEC中COD去除率达到94.90% ± 0.70%,较对照组(AD)的82.00% ± 0.70%增加了12.90% ± 0.74%. 同时,COD去除负荷达(5.27 ± 0.51)kg m-3 d-1,是AD(3.45 ± 0.09)kg m-3 d-1的1.53倍. 对反应中甲烷产生速率和有机酸组分变化分析表明,当外加0.6 V电压时,MEC中的甲烷产生速率为(1 818.54 ± 145.77)mL L-1 d-1,比AD(1 014.88 ± 121.44)mL L-1 d-1增加了78.19%;当外加电压为0.8 V时,MEC中的乙醇去除速率为(102.37 ± 14.65)mg L-1 h-1,是AD组(57.31 ± 10.45)mg L-1 h-1的1.79倍;AD组的最高丙酸浓度高达(1 436.10 ± 84.42)mg/L,而外加1.0 V电压的MEC组,其最高丙酸浓度为(845.57 ± 76.72)mg/L,较之降低了(590.53 ± 7.73)mg/L. 当反应周期结束时,AD中残留的乙酸和丙酸浓度分别是MEC(外加0.8 V电压)中的93.57和5.31倍. 最后,反应器能量平衡分析的结果表明,当外加电压为1.0 V时,其能量产生与净能量产生分别达到了(3.93 ± 0.48)kWh kg-1、(3.80 ± 0.48)kWh kg-1,较AD组(2.92 ± 0.37)kWh kg-1分别增加了(1.01± 0.12)kWh kg-1、(0.88 ± 0.12)kWh kg-1,且MEC均获得了较AD组更多的净能量. 综上表明该MEC可有效促进黄水处理效率并回收甲烷,其最佳外加电压为0.8 V. (图3 表2 参31)
Abstract:
To investigate the use of recycled yellow water, this study used a single-chamber membrane-less microbial electrolysis cell (MEC) with stainless steel cathode to degrade yellow water for methane production and energy recovery. By comparing with the traditional anaerobic digester (AD), the effects of externally applied voltage (0.4 V, 0.6 V, 0.8 V, 1.0 V) on COD removal efficiency, organic acid degradation, methane production, energy recovery, and so on were studied. The results showed that COD removal efficiency was raised from 82.00% ± 0.70% in the AD to 94.90% ± 0.70% in the MEC, and COD load removal in the MEC reached 5.27 ± 0.51 kg m-3 d-1, which was 1.53 times that of the AD (3.45 ± 0.09 kg m-3 d-1), when the applied voltage in the MEC was 0.8 V. The rate of methane production in the MEC (0.6 V applied) was 1 818.54 ± 145.77 mL L-1 d-1, which increased by 78.19%, relative to the AD (1 014.88 ± 121.44 mL L-1 d-1). Meanwhile, when the applied voltage was 0.8 V, the rate of ethanol removal in the MEC was 102.37 ± 14.65 mg L-1 h-1, which was 1.79 times that of the AD (57.31 ± 10.45 mg L-1 h-1). The maximum propionate concentration in the AD was 1 436.10 ± 84.42 mg/L; however, contrastingly, that of the MEC (845.57 ± 76.72 mg/L) was reduced by 590.53 ± 7.73 mg/L, when the applied voltage was 1.0 V. Moreover, when the reaction cycle was completed, the remaining concentrations of acetate and propionate in the AD were 93.57 and 5.31 times those of the MEC, respectively, when the applied voltage was 0.8 V. Finally, the results of the energy?balance?analysis indicated that energy production and net energy production in the MEC (1.0 V) were 3.93 ± 0.48 and 3.80 ± 0.48 kWh kg-1, which increased by 1.01 ± 0.12 and 0.88 ± 0.12 kWh kg-1, respectively, compared with the AD, and net energy in the MEC was greater than that in the AD. To conclude, the stainless steel single-chamber microbial electrolysis cell can effectively enhance yellow-water degradation, and carry out high methane production, when the optimal applied voltage is 0.8 V.

参考文献/References:

1 赵东, 牛广杰, 彭志云, 赵旭东, 余建中, 屈良静, 陈云华. TA.XTplus物性测试仪对黄水分析初探[J]. 酿酒, 2013, 40 (3): 28-30 [Zhao D, Liu GJ, Peng ZY, Zhao XD, Yu JZ, Qu LJ, Cheng YH. Preliminary study on the physical properties of yellow water using TA.XTplus texture analyser [J]. Liq Making, 2013, 40 (3): 28-30]
2 周新虎, 陈翔, 王永伟, 冷云伟. 黄水生物转化技术研究[J]. 酿酒科技, 2011 (11): 65-72 [Zhou XH, Cheng X, Wang YW, Leng YW. Research on Biotransformation of Yellow Water [J]. Liq Making Sci Technol, 2011 (11): 65-72]
3 徐传鸿, 余有贵, 张文武. 黄水的理化分析及其应用研究进展[J]. 食品安全质量检测学报, 2014, 5 (12): 4011-4017 [Xu CH, Yu YG, Zhang WW. Analysis of physical and chemical index of yellow water and research advance in its application [J]. J Food Saf Qual, 2014, 5 (12): 4011-4017]
4 程静, 姜应和. 以黄水为碳源的反硝化过程研究[J]. 中国给水排水, 2014, 30 (15): 122-124 [Cheng J, Jiang YH. Study on denitrification using yellow water as carbon source [J]. China Water Waste, 2014, 30 (15): 122-124]
5 Hamelers HVM, Ter Heijne A, Sleutels T, Jeremiasse AW, Strik D, Buisman CJN. New applications and performance of bioelectrochemical systems [J]. Appl Microb Biotechnol, 2010, 85 (6): 1673-1685
6 Cheng KY, Ho G, Cord-Ruwisch R. Novel methanogenic rotatable bioel- ectrochemical system operated with polarity inversion [J]. Environ Sci Technol, 2011, 45 (2): 796-802
7 Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W. Minimizing losses in bio-electrochemical systems: the road to applications [J]. Appl Microb Biotechnol, 2008, 79 (6): 901-913
8 Cheng SA, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. Proc Natl Acad Sci USA, 2007, 104 (47): 18871-18873
9 Clauwaert P, Verstraete W. Methanogenesis in membraneless microbial electrolysis cells [J]. Appl Microbiol Biotechnol, 2009, 82 (5): 829-836
10 Clauwaert P, Toledo R, Van dHD, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K. Combining biocatalyzed electrolysis with anaerobic digestion [J]. Water Sci Technol, 2008, 57 (4): 575-579
11 Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes [J]. Water Res, 2007, 41 (9): 1984-1994
12 Tartakovsky B, Manuela MF, Wang H, Guiot SR. High rate membrane-less microbial electrolysis cell for continuous hydrogen production [J]. Int J Hydrogen Energy, 2009, 34 (2): 672-677
13 Kim, JR, Premier, GC, Hawkes, FR, Rodriguez J, Dinsdale RM, Guwy AJ. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate [J]. Bioresour Technol, 2010, 101 (4): 1190-1198
14 Dumas C, Basseguy R, Bergel A. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes [J]. Electrochim Acta, 2008, 53(5): 2494-2500
15 Call DF, Merill MD, Logan BE. High surface area stainless steel brushes as cathodes in microbial electrolysis cells [J]. Environ Sci Technol, 2009, 43 (6): 2179-2183
16 Bo T, Zhu XY, Zhang LX, Tao Y, He XH, Li DP, Yan ZY. A new upgraded biogas production process: coupling microbial electrolysiscell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor [J]. Electrochem Commun, 2014, 45 (8): 67-70
17 Feng YJ, Yang Q, Wang X, Logan BE. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells [J]. J Power Sources, 2010, 195 (7): 1841-1844
18 杨彦飞, 杨暖, 薄涛, 李大平, 尹琦, 向元英. 连续流微生物电解池处理有机废水同步生产甲烷[J]. 应用与环境生物学报, 2015, 21 (5): 854-859 [Yang YF, Yang N, Bo T, Li DP, Yin Q, Xing YY. Organic wastewater treatment and methane production in a continuous-flow microbial electrolysis cell [J]. Chin J Appl Environ Biol, 2015, 21 (5): 854-859 ]
19 Feng Y, Wang X, Logan BE, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells [J]. Appl Microbiol Biotechnol, 2008, 78 (5): 873-880
20 Ivanov I, Ren LJ, Siegert M, Logan BE. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment [J]. Int J Hydrogen Energy, 2013, 38 (30): 13135-13142
21 Gil-Carrera L, Escapa A, Carracedo B, Moran A, Gomez X. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages [J]. Bioresour Technol, 2013, 146 (10): 63-69
22 任南琪, 刘敏, 王爱杰, 丁杰, 李洪民. 两相厌氧系统中产甲烷相有机酸转化规律[J]. 环境科学, 2003, 24 (4): 89-93 [Ren NQ, Liu M, Wang AJ, Ding J, Li HM. Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process [J]. Environ Sci, 2003, 24 (4): 89-93]
23 Wang YY, Zhang YL, Wang JB, Meng L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria [J]. Biomass Bioenerg, 2009, 33 (5): 848-853.
24 Logan BE, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology [J]. Environ Sci Technol, 2006, 40 (17): 5181-5192
25 Escapa A, Gil-Carrera L, Garcia V, Moran A. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater [J]. Bioresour Technol, 2012, 117 (10): 55-62
26 Pant D, Singh A, Bogaert GV, Gallego YA, Diels L, Vanbroekhoven K. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects [J]. Renew Sust Energ Rev, 2011, 15 (2): 1305-1313
27 Ding AQ, Yang Y, Sun GD, Wu DL. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC) [J]. Chem Eng J, 2016, 283: 260-265
28 Marcus AK, Torres CI, Rittmann BE. Conduction-based modeling of the biofilm anode of a microbial fuel cell [J]. Biotechnol Bioeng, 2007, 98 (6): 1171-1182
29 Erable B, Etcheverry L, Bergel A. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater [J].?Biofouling, 2011, 27 (3): 319-326
30 Ren Z, Ramasamy RP, Cloud-Owen SR, Yan H, Mench MM, Regan JM. Time-Course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells [J]. Bioresour Technol, 2011, 102 (1): 416-421
31 Tenca A, Cusick RD, Schievano A, Oberti R, Logan BE. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells [J]. Int J Hydrogen Energy, 2013, 38 (4): 1859-1865

相似文献/References:

[1]向元英,杨暖,孙霞,等.单室微生物电解池强化混合脂肪酸产甲烷*[J].应用与环境生物学报,2016,22(05):872.[doi:10.3724/SP.J.1145.2015.12009]
 XIANG Yuanying,YANG Nuan,et al.Enhanced methane production from SCFAs wastewater using single-chamber microbial electrolysis cell*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):872.[doi:10.3724/SP.J.1145.2015.12009]

更新日期/Last Update: 2017-10-25