|本期目录/Table of Contents|

[1]刘炜婳,倪珊珊,林争春,等.植物miR408家族的进化与分子特性[J].应用与环境生物学报,2017,23(06):1042-1051.[doi:10.3724/SP.J.1145.2017.06021]
 LIU Weihua,NI Shanshan,LIN Zhengchun,et al.Evolution and molecular characteristics of the miR408 family in plants[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1042-1051.[doi:10.3724/SP.J.1145.2017.06021]
点击复制

植物miR408家族的进化与分子特性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
1042-1051
栏目:
研究论文
出版日期:
2017-12-25

文章信息/Info

Title:
Evolution and molecular characteristics of the miR408 family in plants
作者:
刘炜婳 倪珊珊 林争春 林玉玲 赖钟雄
福建农林大学园艺植物生物工程研究所 福州 350002
Author(s):
LIU Weihua NI Shanshan LIN Zhengchun LIN Yuling & LAI Zhongxiong**
Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
植物miR408家族进化规律分子特征靶基因预测
Keywords:
plant miR408 family evolutionary regularity molecular characteristic target gene predict
分类号:
Q74 + S184
DOI:
10.3724/SP.J.1145.2017.06021
摘要:
miR408家族在植物上已有报道,但其进化规律与分子特性研究很少. 利用miRbase数据库提供的34种植物49个miR408的前体序列和64个成熟体序列,采用分类统计、进化树构建、序列比对、二级结构预测、染色体定位分析及靶基因预测等手段,进行进化规律与分子特性分析. 结果显示:miR408家族成员分布在34个植物物种中,分布较为广泛,并且苔藓类植物可能是植物miR408家族进化的祖先;物种特异性是影响miR408前体进化特性的重要因素,而序列保守性是影响成熟体进化特性的主要因素;由5p臂上形成的miR408成熟体的序列特异性较大,由3p臂上形成的miR408成熟体的序列保守较高;Mfold预测表明植物miR408家族具有典型的茎环二级结构,茎序列的保守性高于环序列,3p臂上茎序列的保守性高于5p臂上茎序列;靶基因预测表明miR408广泛参与植物生长发育和逆境胁迫的应答. 综上表明植物miR408家族成员在进化过程中保守性与特异性并存,这对进一步研究植物miR408的生物学功能具有参考价值. (图7 表3 参35)
Abstract:
The miR408 family has been reported in some plant species, but little is known about its evolutionary rules and molecular characteristics. In this study, based on the miRbase, 49 precursors and 64 mature sequences of the miR408 family in 34 plant species were analyzed using distribution statistics, construction of phylogenetic trees, sequence alignment, prediction of the secondary structures, analyses of chromosome location, and prediction of the target genes, to explore the molecular characteristics and evolution of the miR408 family members. The results show that the miR408 family members were widely distributed in all 34 species of plants, which suggests that bryophytes might be the evolutionary ancestors of the miR408 family. The specificity of species was an important factor affecting the precursor evolution of the miR408 family, whereas the conservation of sequences was one of the main factors affecting the evolution of the mature miR408 family. The members of miR408-5p were quite specific, whereas the members of miR408-3p were conserved. Mfold predicted that pre-miR408 spontaneously forms a typical, stable stem-loop secondary structure and the stem sequence was more conserved than the loop sequence, and the miR408-3p sequence was more conserved than the miR408-5p sequence. Target gene analysis showed that miR408 family members played various roles in regulating plant growth, development, and response to stress in plants. The miR408 family members were coexistent with conservatism and specificity in evolution, which is a valuable reference?for exploring the diverse biological functions of the miR408 family in plants.

参考文献/References:

1 Sun G. MicroRNAs and their diverse functions in plants [J]. Plant Mol Biol, 2012, 80 (1): 17-36
2 Chen X. A microRNA as a translational repressor of apetala 2 in Arabidopsis flower development [J]. Science, 2004, 303 (5666): 2022-2025
3 Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance [J]. Plant Cell, 2006, 18 (8): 2051-2065
4 Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, Wang JH, Han NB, Hong WZ, Mu Y. Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis [J]. Plant Mol Biol, 2010, 77 (6): 619-629
5 Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis [J]. Plant Cell, 2004, 16 (8): 2001-2019
6 Jonesrhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants [J]. Annu Rev Plant Biol, 2006, 57 (1): 19-53
7 Kantar M, Unver T, Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression [J]. Funct Integr Genomics, 2010, 10 (4): 493-507
8 Ma C, Burd S, Lers A. MiR408 is involved in abiotic stress responses in Arabidopsis [J]. Plant J, 2015, 84 (1): 169-187
9 Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana [J]. RNA, 2008, 14 (5): 836-843
10 Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G. Differential and dynamic regulation of miR398 in resporise to ABA and salt stress in Populus tremula and Arabidopsis thaliana [J]. Plant Mol Biol, 2009, 71 (1): 51-59
11 Tian L, Hui L, Zhang YX, Liu JY. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza satival ssp. indica) [J]. Nucleic Acids Res, 2011, 39 (7): 2821-2833
12 Lu S, Sun Y, Shi RC, Li L, Chiang V. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis [J]. Plant Cell, 2005, 17 (8): 2186-2203
13 Lu S, Sun Y, Shi RC, Li L, Chiang V. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis [J]. Plant Cell, 2005, 17 (8): 2186-2203
14 Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper [J]. Plant Cell, 2014, 26 (12): 4933-4953
15 Christiansen C, Rodbro P, Munck AO. MiR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula [J]. Planta, 2010, 231 (3): 705-716
16 Eldem V, Ak?ay U?, Ozhuner E, Bak?r Y, Uranbey S, Unver T. Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing [J]. PLoS ONE, 2012, 7 (12): 1-14
17 Zhou LG, Liu YH, Liu ZC, Kong DY., Duan M, Luo LJ. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa [J]. J Exp Bot, 2010, 61 (15): 4157-4168
18 Zhang H, He H, Wang X, Wang X, Yang X, Li L, Deng X. Genome-wide mapping of the HY5-mediated genenetworks in Arabidopsis that involve both transcriptional and post-transcriptional regulation [J]. Plant J, 2011, 65 (3): 346-358
19 马圣运. Os-miR408的表达模式及其在水稻种子发育中的功能[D]. 杭州: 浙江大学, 2012 [Ma SY. Expression pattern and function of miR408 in seed development of rice (Oryza sativa) [D]. Hangzhou: Zhengjiang University, 2012]
20 Trindade I, Capit?o C, Dalmay T, Fevereiro MP, Santos DM. MiR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula [J]. Planta, 2010, 231 (3): 705-716
21 郭晓荣, 杨新兵, 王怀琴, 明方琳, 佘旭, 曹晓燕. 丹参miR408基因前体序列的克隆及表达分析[J]. 植物科学学报, 2016, 34 (3): 430-438 [Guo XR, Yang XB, Wang HQ, Ming FL, She X, Cao XY. Cloning and expression analysis of miR408 precursor sequence from Salvia miltiorrhiza [J]. Plant Sci J, 2016, 34 (3): 430-438]
22 Jonesrhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants [J]. Annu Rev Plant Biol, 2006, 57 (1): 19-53
23 Abdelghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis [J]. J Biol Chem, 2008, 283 (23): 15932-15945
24 Mccaig BC, Meagher RB, Dean JFD. Gene structure and molecular analysis of the laccase-like multicopper oxidase (lmco) gene family in Arabidopsis thaliana [J]. Planta, 2005, 221 (5): 619-636
25 Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar [J]. Plant Physiol, 2002, 129 (1): 145-155
26 Dean JFD, Eriksson KE. Laccase and the deposition of lignin in vascular plants [J]. Holzforschung - Int J Biol Chem Phys Technol Wood, 1994, 48 (s1): 21-33
27 Liang M, Davis E, Gardner D, Cai X, Wu Y. Involvement of atlac15 in lignin synthesis in seeds and in root elongation of Arabidopsis [J]. Planta, 2006, 224 (5): 1185-1196
28 Weigel M, Varotto C, Pesaresi P. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana [J]. J Biol Chem, 2003, 278 (33): 31286-31289
29 Yao Y, Guo G, Ni Z, Sunker R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.) [J]. Genome Biol, 2007, 8 (6): R96.1- R96.13
30 Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD. Rfam 12.0: updates to the RNA families database [J]. Nucleic Acids Res, 2015, 43: 130-137
31 夏民旋, 王维, 袁瑞, 邓粉妮, 沈法富. 超氧化物歧化酶与植物抗逆性[J]. 分子植物育种, 2015, 13 (11): 2633-2646 [Xia MX, Wang W, Yuan R, Deng FN, Shen FF. Superoxide dismutase and its research in plant stress-tolerance[J]. Mol Plant Breeding, 2015, 13 (11): 2633-2646]
32 Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress [J]. FEBS J, 2013, 280 (7): 1717-1730
33 Hajyzadeh M, Turktas M, Khawar KM, Unver T. MiR408 overexpression causes increased drought tolerance in chickpea [J]. Gene, 2015, 555 (2): 186-193
34 刘璇, 周广柱, 王晓磊, 汪海岩, 顾钊宇. 水分胁迫下两种卷柏抗旱性研究[J]. 北方园艺, 2011 (5): 102-105 [Liu X, Zhou GZ, Wang XL, Wang HY, Gu ZY. Studies on drought stress of two kinds of Selaginella P. Beauv. plant [J]. North Hort, 2011 (5): 102-105]
35 邓永胜. 低温胁迫下番茄PSII捕光天线蛋白基因LeLhcb2的功能分析[D]. 泰安: 山东农业大学, 2014 [Deng YS. Functional analysis of a tomato PSII light harvesting antenna protein gene LeLhcb2 under chilling stress [D]. Tai’an: Shandong Agricultural University, 2014]

相似文献/References:

[1]黄银晓,林舜华,孔令韶,等.内蒙阿拉善地区植物与土壤元素背景值特征及其相互关系[J].应用与环境生物学报,1996,2(04):329.
 Huang Yinxiao,Lin Shunhua,Kong Lingshao,et al.THE CHARACTERISTICS OF ELEMENT BACKGROUND VALUES OF PLANTS AND SOILS AND THEIR RELATIONSHIPS IN ALASHAN,INNER MONGOLIA[J].Chinese Journal of Applied & Environmental Biology,1996,2(06):329.
[2]李书粉,刘方,胡利宗,等.玉米性别决定基因TASSELSEED2及其同源基因的分子进化特征[J].应用与环境生物学报,2014,20(02):198.[doi:10.3724/SP.J.1145.2014.00198]
 LI Shufen,LIU Fang,HU Lizong,et al.Molecular evolutionary characteristics of maize TASSELSEED2 and homologous genes in plant species[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):198.[doi:10.3724/SP.J.1145.2014.00198]
[3]赵晓东,谢英荷,李廷亮,等.植物对污灌区土壤锌形态的影响[J].应用与环境生物学报,2015,21(03):477.[doi:10.3724/SP.J.1145.2014.11037]
 ZHAO Xiaodong,XIE Yinghe,LI Tingliang,et al.Effects of plants on forms of zinc in sewage irrigated soil[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):477.[doi:10.3724/SP.J.1145.2014.11037]
[4]时欢,林玉玲,赖钟雄,等.CRISPR/Cas9介导的植物基因编辑技术研究进展[J].应用与环境生物学报,2018,24(03):640.[doi:10.19675/j.cnki.1006-687x.2017.07019]
 SHI Huan,LIN Yuling,LAI Zhongxiong,et al.Research progress on CRISPR/Cas9-mediated genome editing technique in plants[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):640.[doi:10.19675/j.cnki.1006-687x.2017.07019]

更新日期/Last Update: 2017-12-25