|本期目录/Table of Contents|

[1]景炬辉,刘晋仙,李毳,等.中条山铜尾矿坝面土壤细菌群落的结构特征[J].应用与环境生物学报,2017,23(03):527-534.[doi:2016.12033]
 JING Juhui,LIU Jinxian,LI Cui,et al.The structural characteristics of a soil bacterial community in a dam of copper mine tailings in Zhongtiaoshan mountains, Shanxi[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):527-534.[doi:2016.12033]
点击复制

中条山铜尾矿坝面土壤细菌群落的结构特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
527-534
栏目:
研究论文
出版日期:
2017-06-25

文章信息/Info

Title:
The structural characteristics of a soil bacterial community in a dam of copper mine tailings in Zhongtiaoshan mountains, Shanxi
作者:
景炬辉刘晋仙李毳贾彤王小云柴宝峰
1山西大学生物技术研究所 太原 030006 2山西大学黄土高原研究所 太原 030006 3山西财经大学环境经济学院 太原 030006
Author(s):
JING Juhui LIU Jinxian LI Cui JIA Tong WANG Xiaoyun & CHAI Baofeng
1Institute of Biotechnology, Shanxi University, Taiyuan 030006, China 2Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China 3Department of Environmental Economics, Shanxi University of Finance and Economics, Taiyuan 030006, China
关键词:
铜尾矿地微生物群落植物群落多样性环境因子重金属土壤酶
Keywords:
copper tailing dam bacteria community plant community diversity environmental factor heavy metal soil enzyme
分类号:
Q154.36
DOI:
2016.12033
摘要:
微生物在尾矿废弃地土壤发育、营养物质循环、有毒物质降解等生态恢复过程中发挥重要作用. 采用Illumina MiSeq测序的方法,分析中条山十八河尾矿废弃地不同恢复阶段(1-45年)的细菌群落结构,并结合植物群落、土壤理化性质和土壤酶活性,探讨细菌群落结构与功能变化的调控机制. 结果表明,不同恢复年限的尾矿坝,土壤理化性质、土壤酶活性和植物群落结构发生梯度变化. 在这一环境梯度下,不同恢复年限的细菌群落结构具有显著差异,其中优势细菌主要有变形菌门(Proteobacteria)、放线菌门(Actinobacteri)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes). 细菌群落组成与环境因子和植物群落多样性显著相关. 细菌优势科的相对丰度主要与重金属(Cu、Mn、Pb、Zn)含量相关,鞘脂单胞菌科(Sphingomonadaceae)的相对丰度与重金属(Cd、Cu、Pb、Zn)含量极显著正相关. 恢复45年、15年的土壤中细菌多样性最高,且群落组成相似,恢复1年的土壤中细菌丰度较高,而多样性最低. 本研究表明,土壤理化因子、重金属含量和植物群落结构是造成土壤中细菌群落结构变化的关键因素;鞘脂单胞菌科对重金属具有一定的耐受性,因此可作为重金属污染区域生态恢复的理想菌种. (图3 表4 参38)
Abstract:
Microorganisms play a key role in soil development, nutrient cycling, and degradation of toxic substances during reclamation processes of wastelands containing mine tailings. In this study, the Illumina MiSeq method was applied to analyze the bacterial community structure in a dam of Shibahe mine tailing wastelands at different restoration stages (1–45 years). Meanwhile, the data on plant community, soil physicochemical properties, and soil enzymes were collected to be used for studying the mechanisms regulating the structure and function of the bacterial community. The results indicated that soil physicochemical properties, soil enzymes, and the soil plant community formed a gradient process on the dam of copper mine tailings. Under these conditions, the structures of bacterial communities were significantly different at different restoration stages of the dam land, where Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were dominant phyla at different proportions. The composition of a bacterial community significantly correlated with environmental factors and plant diversity. The relative abundance of dominant families of bacteria was mainly related to concentrations of heavy metals (Cu, Mn, Pb, and Zn), and the relative abundance of Sphingomonadaceae positively correlated with heavy metals (Cd, Cu, Pb, and Zn). The diversity of bacteria was higher and the composition of the community was similar in the 45-year and 15-year dam land, whereas the abundance of bacteria was the highest and diversity was the lowest in the 1-year dam land. The results showed that soil physicochemical factors, heavy metal content, and plant community structure were the key factors affecting the structure of the soil bacterial community. Sphingomonadaceae showed certain tolerance to heavy metals; consequently, these microbes can be used as an alternative taxon for ecological restoration in a mining area.

参考文献/References:

1 Li Y, Wen H, Chen L, Yin T. Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China [J]. PLoS ONE, 2014, 9 (12): 1-24
2 Huang L, Tang F, Song Y, Wan C, Wang S, Liu W, Shu W. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings [J]. FEMS Microbiol Ecol, 2011, 78 (3): 439-450
3 Pereira LB, Vicentini R, Ottoboni LMM. Changes in the bacterial community of soil from a neutral mine drainage channel [J]. PLoS ONE, 2014, 9 (5): e96605
4 Bier RL, Voss KA, Bernhardt ES. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams [J]. ISME J, 2014 (9): 1378-1390
5 Dangi SR, Stahl PD, Wick AF, Ingram LJ, Buyer JS. Soil microbial community recovery in reclaimed soils on a surface coal mine site [J]. Soil Sci Soc Am J, 2012, 76 (3): 915-924
6 Lewis DE, Chauhan A, White JR, Overholt W, Green SJ, Jasrotia P, Wafula D, Jagoe C. Microbial and geochemical assessment of bauxitic un-mined and post-mined chronosequence soils from Mocho Mountains, Jamaica [J]. Microb Ecol, 2012, 64 (3): 738-749
7 Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 2010, 4 (10): 1340-1351
8 Callender KL, Roy S, Khasa DP, Whyte LG, Greer CW. Actinorhizal Alder phytostabilization alters microbial community dynamics in gold mine waste rock from northern Quebec: a greenhouse study [J]. PLoS ONE, 2016, 11 (2): e150181
9 沈国清, 陆贻通, 洪静波. 重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征[J]. 应用与环境生物学报, 2005, 11 (4): 479-482 [Shen GQ, Lu YT, Hong JB. Quantitative expression and effect of combined pollution of heavy metals and polycyclic acromatic hydrocarbons on soil enzyme [J]. Chin J Appl Environ Biol, 2005, 11 (4): 479-482
10 Zhan J, Sun Q. Development of microbial properties and enzyme activities in copper mine wasteland during natural restoration [J]. Catena, 2014, 116: 86-94
11 Gomez-Casanovas N, Matamala R, Cook DR, Gonzalez-Meler MA. Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands [J]. Global Change Biol, 2012, 18 (8): 2532-2545
12 Li J, Pu L, Zhu M, Zhang J, Li P, Dai X, Xu Y, Liu L. Evolution of soil properties following reclamation in coastal areas: a review [J]. Geoderma, 2014, 226: 130-139
13 Cuia J, Liu C, Li Z, Wang L, Chen X, Ye Z, Fang C. Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China [J]. Soil Till Res, 2012, 123: 50-60
14 朱永恒, 张平究, 张衡, 韩斐, 陆林. 铜尾矿自然废弃地土壤动物的迁居与恢复[J]. 应用与环境生物学报, 2013, 19 (3): 459-465 [Zhu YH, Zhang PJ, Zhang H, Han F, Lu L. Immigration and rehabilitation of soil fauna in the natural abandoned land of copper-mine-tailing [J]. Chin J Appl Environ Biol, 2013, 19 (3): 459-465
15 Kuang J, Huang L, Chen L, Hua Z, Li S, Hu M, Li J, Shu W. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage [J]. ISME J, 2013, 7 (5): 1038-1050
16 李旭华, 邓永利, 张峰. 山西庞泉沟自然保护区森林群落物种多样性[J]. 生态学杂志, 2013, 32 (7): 1667-1673 [Li XH, Deng YL, Zhang F. Species diversity of forest communities in Pangquangou Nature Reserve, Shanxi of China [J]. Chin J Ecol, 2013, 32 (7):1667-1673
17 胡君利, 林先贵, 尹睿, 禇海燕, 王俊华, 张华勇, 曹志洪. 浙江慈溪不同利用年限水稻土微生物生物量与酶活性比较[J]. 生态学报, 2008, 28 (4): 1552-1557 [Hu JL, Lin XG, Yin R, Chu HY, Wang JH, Zhang HY, Cao ZH. Comparison of microbial biomass and enzyme activities in paddy soils with different utilized years in Cixi, Zhejiang Province [J]. Acta Ecol Sin, 2008, 28 (4): 1552-1557
18 Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E. Defining operational taxonomic units using DNA barcode data [J]. Philos T R Soc B, 2005, 360 (1462): 1935-1943
19 贺强, 崔保山, 赵欣胜, 付华龄, 廖晓琳. 黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系[J]. 生态学报, 2009, 29 (2): 676-687 [He Q, Cui BS, Zhao XS, Fu HL, Liao XL. Relationships between salt marsh vegetation distribution/diversity and soil chemical factors in the Yellow River Estuary, China [J]. Acta Ecol Sin, 2009, 29 (2): 676-687
20 Schuster B, Diekmann M. Species richness and environmental correlates in deciduous forests of Northwest Germany [J]. For Ecol Manage, 2005, 206 (1-3): 197-205
21 邱成书, 张举成, 李河. 矿区土壤部分微生物生物学指标的研究[J]. 环境科学与技术, 2008, 31 (7): 18-20 [Qiu CS, Zhang JC, Li H. Some microbial indicators in a soil investigation of mining area [J]. Environ Sci Technol, 2008, 31 (7): 18-20
22 Xie XH, Zhu WX, Liu N. Bacterial community composition in reclaimed and unreclaimed tailings of Dexing copper mine, China [J]. Afr J Biotechnol, 2013, 12 (30): 4841-4849
23 康福星, 龙健, 王倩, 齐瑞环, 朱健. 微生物胞外聚合物对水体重金属和富营养元素的环境生化效应研究展望[J]. 应用与环境生物学报, 2010, 16 (1): 129-134 [Kang FX, Long J, Wang Q, Qi RH, Zhu J. Environmental & biochemical effects of microbial extracellular polymeric substances on the heavy metals and eutrophic elements In water areas: a review [J]. Chin J Appl Environ Biol, 2010, 16 (1):129-134
24 Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges [J]. Science, 2001, 294 (5543): 804-808
25 Mounaouer B, Nesrine A, Abdennaceur H. Identification and characterization of heavy metal-resistant bacteria selected from different polluted sources [J]. Desalin Water Treat, 2014, 52 (37-39): 7037-7052
26 Brueck WM, Brueck TB, Self WT, Reed JK, Nitecki SS, Mccarthy PJ. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida [J]. ISME J, 2010, 4 (5): 686-699
27 滕应, 黄昌勇. 重金属污染土壤的微生物生态效应及其修复研究进展[J]. 土壤与环境, 2002, 11 (1): 85-89 [Teng Y, Huang CY. Ecological effect of heavy metals on soil microbes and research advances on the mechanisms of bioremediation [J]. Soil Environ Sci, 2002, 11 (1): 85-89
28 黎霞, 承磊, 邓宇. 石油烃厌氧生物降解研究进展[J]. 应用与环境生物学报, 2008, 14 (2): 283-289 [Li X, Cheng L, Deng Y. Advances in anaerobic biodegradation of hydrocarbon [J]. Chin J Appl Environ Biol, 2008, 14 (2): 283-289
29 Saito T, Ishii S, Otsuka S, Nishiyama M, Senoo K. Identification of novel beta-proteobacteria in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing [J]. Microbes Environ, 2008, 23 (3): 192-200
30 Hemp J, Lücker S, Schott J, Pace LA, Johnson JE, Schink B, Daims H, Fischer WW. Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification [J]. ISME, 2016, 10 (11): 2669-2678
31 Xiao Y, Liu X, Ma L, Liang Y, Niu J, Gu Y, Zhang X, Hao X, Dong W, She S, Yin H. Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms [J]. Appl Microbiol Biot, 2016, 100 (15): 6871-6880
32 Xie J, He Z, Liu X, Liu X, Van Nostrand JD, Deng Y, Wu L, Zhou J, Qiu G. GeoChip-Based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage [J]. Appl Environ Microb, 2011, 77 (3): 991-999
33 Harris J. Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? [J]. Science, 2009, 325 (5940): 573-574
34 Bier RL, Voss KA, Bernhardt ES. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams [J]. ISME J, 2015, 9 (6): 1378-1390
35 黄元元, 曲来叶, 曲秀春, 杜淑芹. 镜泊湖岩溶台地不同植被类型土壤微生物群落特征[J]. 生态学报, 2012, 32 (9): 2827-2836 [Huang YY, Qu LY, Qu XC, Du SQ. Soil microbial community characteristics under different vegetation types at the Holocene-basalt Platform, Jingpo Lake area, Northeast China [J]. Acta Ecol Sin, 2012, 32 (9): 2827-2836
36 Perez-Pantoja D, Leiva-Novoa P, Donoso RA, Little C, Godoy M, Pieper DH, Gonzalez B. Hierarchy of carbon source utilization in soil bacteria: hegemonic preference for benzoate in complex aromatic compound mixtures degraded by Cupriavidus pinatubonensis strain JMP134 [J]. Appl Environ Microb, 2015, 81 (12): 3914-3924
37 吴建峰, 沈锡辉, 周宇光, 刘双江. 一株降解对氯硝基苯的Comamonas sp.CNB1的分离鉴定及其降解特性[J]. 微生物学报, 2004, 44 (1): 8-12 [Wu JF, Shen XH, Zhou YG, Liu SJ. Characterization of p-chloronitrobenzene-degrading Comamonas sp. CNB1 and its degradation of p-chloronitrobenzene [J]. Acta Microbiol Sin, 2004, 44 (1): 8-12
38 Izquierdo I, Caravaca F, Alguacil MM, Hernandez G, Roldan A. Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions [J]. Appl Soil Ecol, 2005, 30 (1): 3-10

相似文献/References:

[1]王凤兰,王晓东.油藏微生物群落分布及提高采收率的模拟实验研究[J].应用与环境生物学报,2007,13(06):859.
 WANG Fenglan,et al..Distribution of Microbes and Their Stimulation for Enhancing Oil Recovery in the Daqing Oilfield, China[J].Chinese Journal of Applied & Environmental Biology,2007,13(03):859.
[2]刘琨毅,卢中明,郑佳,等.浓香型白酒窖泥微生物群落PLFA指纹图谱方法[J].应用与环境生物学报,2012,18(05):831.[doi:10.3724/SP.J.1145.2012.00831]
 LIU Kunyi,LU Zhongming,ZHENG Jia,et al.PLFA Fingerprint Method for Assessing Microbial Communities of Strong Aromatic Liquor Pit Mud[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):831.[doi:10.3724/SP.J.1145.2012.00831]
[3]黄廷林,邸诗雨,张海涵,等.西安市典型景观水体水质与微生物种群结构多样性[J].应用与环境生物学报,2014,20(04):697.[doi:10.3724/SP.J.1145.2013.12003]
 HUANG Tinglin,DI Shiyu,ZHANG Haihan,et al.Water quality and diversity of microbial community structure of Xi’an typical scenic water bodies[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):697.[doi:10.3724/SP.J.1145.2013.12003]
[4]张丽娟,符波,罗衎,等.同型产乙酸菌富集物的群落解析及转化合成气产乙酸[J].应用与环境生物学报,2014,20(06):1052.[doi:10.3724/SP.J.1145.2014.04040]
 ZHANG Lijuan,FU Bo,LUO Kan,et al.Microbial community characterization of homoacetogen enrichment culture and its acetate production through syngas bioconversion[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):1052.[doi:10.3724/SP.J.1145.2014.04040]
[5]沈烁,杨长明,成水平.PCR-DGGE分析合肥市塘西河表层沉积物细菌群落结构空间分布特征[J].应用与环境生物学报,2015,21(01):80.[doi:10.3724/SP.J.1145.2014.07002]
 SHEN Shuo,YANG Changming,CHENG Shuiping.Spatial characteristics analysis by PCR-DGGE for bacterial communities in surface sediments of Tangxi River, Hefei City[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):80.[doi:10.3724/SP.J.1145.2014.07002]
[6]刘长红,袁野,杨君,等.稻田改为旱地后土壤有机碳矿化及微生物群落结构的变化[J].应用与环境生物学报,2015,21(05):960.[doi:10.3724/SP.J.1145.2015.01050]
 LIU Changhong,YUAN Ye,YANG Jun,et al.Variation in soil organic carbon mineralization and microbial community structure induced by the conversion from double rice fields to drained fields[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):960.[doi:10.3724/SP.J.1145.2015.01050]
[7]张 晶 孙照勇** 钟小忠 黄玉莲 谭 力 汤岳琴 木田建次.奶牛粪条垛式模拟堆肥腐熟度及微生物群落结构变化[J].应用与环境生物学报,2016,22(03):423.[doi:10.3724/SP.J.1145.2015.11030]
 ZHANG Jing,SUN Zhaoyong**,ZHONG Xiaozhong,et al.Maturity and microbial community structure dynamics during simulated windrow composting of solid fraction of dairy manure*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):423.[doi:10.3724/SP.J.1145.2015.11030]
[8]胡少达,郭锦,邹少兰,等.宏蛋白质组学在活性污泥研究中的应用[J].应用与环境生物学报,2016,22(22卷04):725.[doi:10.3724/SP.J.1145.2015.11009]
 HU Shaoda,GUO Jin,ZOU Shaolan,et al.Application of metaproteomics in study of activated sludge*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):725.[doi:10.3724/SP.J.1145.2015.11009]
[9]刘娜,陆震鸣,王丽娟,等.克隆文库分析镇江香醋发酵过程中乙偶姻合成基因的多样性[J].应用与环境生物学报,2017,23(01):134.[doi:10.3724/SP.J.1145.2016.01052]
 LIU Na,LU Zhenming,WANG Lijuan,et al.Clone library analysis of enzyme genes in metabolic pathway for acetoin production in the fermentation of Zhenjiang aromatic vinegar[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):134.[doi:10.3724/SP.J.1145.2016.01052]
[10]肖莉凡,董泰丽,崔青青,等.硝酸盐生物氧化沼气硫化氢及微生物群落结构[J].应用与环境生物学报,2017,23(04):707.[doi: 10.3724/SP.J.1145.2016.09023]
 XIAO Lifan,DONG Taili,CUI Qingqing,et al.Analysis of virulence-related genes and acute oral toxicity of Chryseobacterium indologenes YM5[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):707.[doi: 10.3724/SP.J.1145.2016.09023]

更新日期/Last Update: 2017-06-25