|本期目录/Table of Contents|

[1]蒲艾平,刘晓玲,罗鸿兵,等.葡萄糖碳源对复合垂直流人工湿地甲烷排放的驱动影响[J].应用与环境生物学报,2017,23(04):719-727.[doi:10.3724/SP.J.1145.2016.08031]
 PU Aiping,LIU Xiaoling,LUO Hongbing,et al.Bio-film cultivation and nitrification-denitrification performance of three kinds of fillings[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):719-727.[doi:10.3724/SP.J.1145.2016.08031]
点击复制

葡萄糖碳源对复合垂直流人工湿地甲烷排放的驱动影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年04期
页码:
719-727
栏目:
研究论文
出版日期:
2017-08-25

文章信息/Info

Title:
Bio-film cultivation and nitrification-denitrification performance of three kinds of fillings
作者:
蒲艾平刘晓玲罗鸿兵胡丽梅张可黄波李玫范良千陈凤辉戢林程琳
1四川农业大学环境学院 成都 611130 2四川水利职业技术学院 成都 611231 3四川农业大学土木工程学院 成都 611830 4四川农业大学四川省高等学校村镇建设防灾减灾工程研究中心 成都 611830 5四川省泸州市环境监测中心站 泸州 646000 6四川农业大学建筑与城乡规划学院 成都 611830 7成都大学城乡建设学院 成都 610000
Author(s):
PU Aiping1 LIU Xiaoling2 LUO Hongbing1 3 4** HU Limei5 ZHANG Ke3 4 HUANG Bo6 LI Mei7 FAN Liangqian1 3 4 CHEN Fenghui3 4 JI Lin3 4 & CHENG Lin3 4
1College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China 2Sichuan Water Conservancy Vocational College, Chengdu 611231, China 3College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China 4Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village-Town Construction, Chengdu 611830, China 5Luzhou Environmental Protection Monitoring Center Station, Luzhou 646000, China 6College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 611830, China 7School of Urban and Rural Construction, Chengdu University, Chengdu 610000, China
关键词:
葡萄糖碳源复合垂直流人工湿地(IVCW)甲烷排放风车草
Keywords:
glucose as carbon source Integrated Vertical-Flow Constructed Wetland methane emissions Cyperus alternifolius L.
分类号:
X703
DOI:
10.3724/SP.J.1145.2016.08031
摘要:
人工湿地甲烷排放驱动对全球变暖具有重要作用,为控制甲烷排放同时提高污水去除效率,构建了5层不同介质组成的复合垂直流人工湿地系统(Integrated Vertical-Flow Constructed Wetland,IVCW),利用现场监测和动力学模型分析添加不同浓度葡萄糖碳源对甲烷排放驱动和总氮(TN)、化学需氧量(COD)去除率的影响. 结果表明:添加0.5、1、2和4 mmol/L葡萄糖溶液时,(1)甲烷排放通量分别为4、3.50、3.90和3.40 mol m-2 d-1,比空白实验分别增加了27%、12%、24%和9.80%;(2)对应的风车草茎叶系统甲烷排放通量比根水系统分别高了0.90、1.60、1.50和0.70 mol m-2 d-1;(3)同时IVCW对碳平均利用率分别为32.17%、53.51%、76.86%和76.72%;TN平均去除率分别为37.30%、11.14%、14.79%和48.75%,COD平均去除率分别为70%、91.10%、98.78%和92.31%. (4)葡萄糖驱动IVCW甲烷排放可认为符合二级动力学方程,其甲烷驱动常数为49.64 mg/h. 本研究结果表明添加葡萄糖驱动IVCW的甲烷排放处于较高水平,甲烷平均排放通量增加了18.2%,可为IVCW处理污水过程中甲烷排放提供参考. (图6 表5 参51)
Abstract:
Methane emissions from constructed wetlands (CWs) contribute to global warming. This study aimed to investigate the effect of glucose addition in CWs on methane emission. Field monitoring and the dynamic model analysis were used to investigate the effect of adding different glucose concentrations as carbon sources on methane emission, TN degradation, and COD degradation in an integrated vertical-flow constructed wetland (IVCW) system composed of five layers filled with different materials. When glucose concentrations of 0.5 mmol/L, 1.0 mmol/L, 2.0 mmol/L, and 4.0 mmol/L were added separately into the IVCW, results showed that: (1) methane emission from IVCW was 4.0 mol m-2 d-1, 3.5 mol m-2 d-1, 3.9 mol m-2 d-1, and 3.4 mol m-2 d-1, respectively, increasing by 27.0%, 12.0%, 24.0%, and 9.8%, respectively, compared with the blank experiment. (2) Accordingly, methane emissions from the Cyperus alternifolius L. stem-leaf system in the IVCW were 0.9 mol m-2 d-1, 1.6 mol m-2 d-1, 1.5 mol m-2 d-1, and 0.7 mol m-2 d-1, respectively, and were higher than those from the C. alternifolius L. root-water in the IVCW system. (3) Average carbon utilization rates in the IVCW were 32.17%, 52.28%, 76.86%, and 76.72%, respectively, with corresponding average TN removal rates of 37.30%, 11.14%, 14.79%, and 48.75% and average COD removal rates of 70.00%, 91.10%, 98.78%, and 92.31%, respectively. (4) Furthermore, it was found that methane emissions driven by adding glucose in the IVCW was considered as the second-order dynamic kinetic model with methane kinetic constant of 49.64 mg/h. With the average methane emissions increasing by 18.2%, methane emissions driven by adding glucose in the IVCW was considered to be high, which can help to understand the relationship between methane emissions from CWs and carbon source.

参考文献/References:

1 Waletzko EJ, Mitsch WJ. Methane emissions from wetlands: an in situ side-by-side comparison of two static accumulation chamber designs [J]. Econ Geol, 2014, 72: 95-102
2 Whalen SC. Biogeochemistry of methane exchange between natural wetlands and the atmosphere [J]. Environ Eng Sci, 2005, 22 (1): 73-94
3 陈槐, 周舜, 吴宁, 王艳芬, 罗鹏, 石福孙.湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报, 2006, 12 (5): 726-733 [Chen H, Zhou S, Wu N, Wang YF, Luo P, Shi FS. Advance in studies on production, oxidation and emission flux of methane from wetlands [J]. Chin J Appl Environ Biol, 2006, 12 (5): 726-733]
4 Corbella C, Puigagut J. Effect of primary treatment and organic loading on methane emissions from horizontal subsurface flow constructed wetlands treating urban wastewater [J]. Econ Geol, 2015, 80: 79-84
5 Chen Y, Wen Y, Cheng J, Xue CH, Yang DH, Zhou Q. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: implications for denitrification in constructed wetlands [J]. Bioresour Technol, 2011, 102 (3): 2433-2440
6 马兴冠, 赵秋菊, 江涛. 人工湿地植物外加碳源的预处理研究[J]. 水处理技术, 2015, 41 (7): 26-30 [Ma XG, Zhao QJ, Jiang T. The pretreatment of external carbon source for the artificial wetland plants [J]. Technol Water Treat, 2015, 41 (7): 26-30]
7 肖蕾, 贺锋, 梁雪, 黄福青, 徐栋, 吴振斌. 添加固体碳源对垂直流人工湿地污水处理效果的影响[J]. 湖泊科学, 2012, 24 (6): 843-848 [Xiao L, He F, Liang X, Huang FQ, Xu D, Wu ZB. Effect of the solid carbon sources addition on performance of wastewater treatment efficiency in vertical flow constructed wetland [J]. J Lake Sci, 2012, 24 (6): 843-848]
8 Li C, Wu S, Dong R. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland [J]. J Environ Manage, 2015, 151: 310-316
9 Shen Z, Zhou Y, Liu J, Xiao Y, Cao R, Wu FP. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland [J]. Bioresour Technol, 2015, 175: 239-244
10 Kirui WK, Wu S, Kizito S, Carvalho PN, Dong R. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: effect of intermittent aeration and glucose addition [J]. J Environ Manage, 2016, 166: 38-44
11 程璞, 张慧, 程滨. 生活污水不同进水C/N比负荷对垂直潜流式人工湿地排放温室气体的影响[J]. 环境工程学报, 2014, 8 (3): 1099-1105 [Cheng P, Zhang H, Cheng B. Effect of various inflow domestic sewage C/N ratios on greenhouse gases emission from vertical subsurface flow constructed wetlands [J]. Chin J Environ Eng, 2014, 8 (3): 1099-1105]
12 Yan C, Zhang H, Li B, Wang D, ZhaoY, Zheng Z. Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater [J]. J Hazard Mater, 2012, 203-204: 188-194
13 胡丽梅. 复合垂直流人工湿地系统甲烷排放驱动究[D]. 成都: 四川农业大学, 2013 [Hu LM. Research on driven methane emissions from integrated vertical flow constructed wetland [D]. Chengdu: Sichuan Agricultural University, 2013]
14 刘佳, 罗谦, 刘含. 成都活水公园于城市公园建设的意义探索[J]. 山西建筑, 2011, 37 (2): 2-4 [Liu J, Luo Q, Liu H. Exploration on the meaning of Chengdu flowing-water park for urban park construction [J]. Shanxi Archit, 2011, 37 (2): 2-4]
15 Wang N, Hill G, Peng J. The role of glucose in developing enhanced biological phosphorus removal [J]. Environ Eng Policy, 2001, 3 (1): 45-54
16 Khoshmanesh A, Hart BT , Duncan A, Beckett R. Biotic uptake and release of phosphorus by a wetland sediment [J]. Environ Technol, 1999, 20: 85-91
17 Zhang ML, Zhao LF, Mei CH, Li Y, Hua GF. Effects of plant material as carbon sources on TN removal efficiency and N2O flux in vertical-flow-constructed wetlands [J]. Water Air Soil Pollut, 2014, 225 (11): 2181
18 Deng HH, Ge LY, Xu T, Zhang MH, Wang XD, Zhang YL, Peng H. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands [J]. J Environ Qual, 2011, 40 (6): 1730-1736
19 邓欢欢, 葛利云, 顾国泉, 李建华, 赵建夫. 垂直流人工湿地基质微生物群落的代谢特性和功能多样性研究[J]. 水处理技术, 2007, 33 (6): 18-21 [Deng HH, Ge LY, Gu GQ, Li JH, Zhao JF. Analysis of metabolic characteristics and functional diversity of the microbial communities in vertical flow constructed wetlands [J]. Technol Water Treat, 2007, 33 (6): 18-21]
20 肖艳, 叶旌, 杨敦. Monod模型在潜流式人工湿地中的应用探讨[J]. 环境技术, 2003, 21 (2): 21-25 [Xiao Y, Ye J, Yang D. Research of application of MONOD model in subsurface constructed wetland [J]. Environ Technol, 2003, 21 (2): 21-25]
21 崔丽娟, 张岩, 赵欣胜, 李伟, 张曼胤, 王义飞, 李胜男. 基于一级动力学模型的潜流湿地污染物去除研究[J]. 中国环境科学, 2011, 31 (10): 1697-1704 [Cui LJ, Zhang Y, Zhao XS, Li W, Zhang MY, Wang YF, Li SN. Pollutants removal in subsurface constructed wetland based on the first-order kinetic model [J]. China Environ Sci, 2011, 31 (10): 1697-1704]
22 赵桂瑜. 人工湿地除磷基质筛选及其吸附机理研究[D]. 上海: 同济大学, 2007 [Zhao GY. Screening of substrates for phosphorus removal in constructed wetlands and its adsorption mechanism research [D]. Shanghai: Tongji University, 2007]
23 Fan J, Zeng J. A Levenberg朚arquardt algorithm with correction for singular system of nonlinear equations [J]. Appl Math Comput, 2013, 219 (17): 9438-9446
24 Kazemi P, Renka RJ. A Levenberg朚arquardt method based on Sobolev gradients [J]. Nonlinear Anal Theory Methods Appl, 2012, 75 (16): 6170-6179
25 S鴙ik AK, Augustin J, Heikkinen K, Huttunen, JT, Necki, JM, Karjalainen, SM, Kl鴙e B, Liikanen A, Mander U, Puustinen M, Teiter S, Wachniew P. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in europe [J]. J Environ Qual, 2006, 35 (6): 2360-2373
26 Mander? Dotro G, Ebie Y, Towprayoone S, Chiemchaisrif C, Nogueirag SF, Jamsranjavh B, Kasaka K, Truua J, Tournebizeb J, Mitschi WJ. Greenhouse gas emission in constructed wetlands for wastewater treatment: a review [J]. Ecol Eng, 2014, 66 (3): 19-35
27 Mander ? L鮤mus K, Teiter S, Mauringa T, Nurka K, Augustind J. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands [J]. Sci Total Environ, 2008, 404 (2-3): 343-353
28 丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22 (10): 1672-1679 [Ding WX, Cai ZC. Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands [J]. Acta Ecol Sin, 2002, 22 (10): 1672-1679]
29 李顺义, 贾晓珊, 王岩. 外加碳源对厌氧微生物产甲烷活性的影响[J]. 安徽农业科学, 2009, 37 (18): 8331-8333 [Li SY, Jia XS, Wang Y. Effect of organic carbon resource on specific methanogenic activity of anaerobic microorganism [J]. J Anhui Agric Sci, 2009, 37 (18): 8331-8333]
30 Huang Y, Sass R, Fisher F. Methane emission from Texas rice paddy soils. 2. seasonal contribution of rice biomass production to CH4 emission [J]. Global Ch Biol, 1997, 3 (6): 491-500
31 吴筱. 河滨修复湿地甲烷排放及其影响因素试验研究[D]. 上海: 东华大学, 2014 [Wu Y. Study on the methane emission and its impacting factors in riparian restored wetlands [D]. Shanghai: Donghua University, 2014]
32 Bridgham SD, Richardson CJ. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands [J]. Soil Biol Biochem, 1992, 24 (11): 1089-1099
33 Kludze HK, Delaune RD. Straw application effects on methane and oxygen exchange and growth in rice [J]. Soil Soc Am J, 1995, 59 (3): 824-830
34 沙晨燕. 季节性人工河滨湿地甲烷排放[J]. 生态环境学报, 2012, 21 (7): 1271-1276 [Sha CY. Methane emissions from seasonal created riverine wetland [J]. Ecol Environ Sci, 2012, 21 (7): 1271-1276]
35 De la Varga D, Ruiz I, 羖varez JA, Soto M. Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage [J]. Sci Total Environ, 2015, 538: 824-833
36 丁维新, 蔡祖聪. 温度对甲烷产生和氧化的影响[J]. 应用生态学报, 2003, 14 (4): 604-608 [Ding WX, Cai ZC. Effect of temperature on methane production and oxidation in soils [J]. Chin J Appl Ecol, 2003, 14 (4): 604-608]
37 Inglett KS, Inglett PW, Reddy KR, Osborne TZ. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation [J]. Biogeochemistry, 2012, 108 (1-3): 77-90
38 Masscheleyn PH, Delaune RD, Jr. WHP. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: effect of soil oxidation-reduction status [J]. Chemosphere, 1993, 26 (93): 251-260
39 Jee HS, Nishio N, Jee HS. Influence of redox potential on biomethanation of H2 and CO2 by methanobacterium thermoautotrophicum in eh-stat batch cultures [J]. J General Appl Microbiol, 1987, 33 (5): 401-409
40 Keppler F, Hamilton JTG, Bra?M, R鯿kmann T. Methane emissions from terrestrial plants under aerobic conditions [J]. Nature, 2006, 439 (7073): 187-191
41 孟伟庆, 吴绽蕾, 王中良. 湿地生态系统碳汇与碳源过程的控制因子和临界条件[J]. 生态环境学报, 2011, 20 (8): 1359-1366 [Meng WQ, Wu ZL, Wang ZL. Control factors and critical conditions between carbon sinking and sourcing of wetland ecosystem [J]. Ecol Environ Sci, 2011, 20 (8): 1359-1366]
42 Cui JB, Li CS, Sun G, Trettin C. Linkage of MIKE SHE to wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation [J]. Biogeochemistry, 2005, 72 (2): 147-167
43 Ryan MG, Binkley D, Fownes JH, Giardina CP, SenockRS. An experimental test of the causes of forest growth decline with stand age [J]. Ecol Monogr, 2004, 74 (3): 393-414
44 徐后涛, 王丽卿, 季高华, 朱雪生, 邱雪妹, 赵风斌. 沙田湖人工湿地植物碳氮磷动态研究[J]. 上海环境科学, 2011, 30 (3): 105-111 [Xu HT, Wang LQ, Ji GH, Zhu XS, Qiu XM, Zhao FB. A study on dynamics of carbon/nitrogen/phosphorus for constructed wetland plants at Shatianhu [J]. Shanghai Environ Sci, 2011, 30 (3): 105-111]
45 Zhu H, Yan BX, Xu YY, Guan JN, Liu SY. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios [J]. Ecol Eng, 2014, 63: 58-63
46 赵联芳, 朱伟, 高青. 补充植物碳源提高人工湿地脱氮效率[J]. 解放军理工大学学报(自然科学版), 2009, 10 (6): 644-649 [Zhao LF, Zhu W, Gao Q. Improving nitrogen removal of constructed wetlands by supplying plant carbon [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2009, 10 (6): 644-649]
47 张兰河, 徐恒铎, 庞香蕊, 杨日光, 张德义. 低温下碳源对同步硝化反硝化的影响[J]. 化学工程, 2013, 41 (4): 11-15 [Zhang LH, Xu HD, Pang XR, Yang RG, Zhang DY. Effect of carbon sources on simultaneous nitrification and denitrification at low temperature [J]. Chem Eng (China), 2013, 41 (4): 11-15]
48 佘丽华, 贺锋, 徐栋, 林济东, 吴振斌. 碳源调控下复合垂直流人工湿地脱氮研究[J]. 环境科学, 2009, 30 (11): 3300-3305 [She LH, He F, Xu D, Lin JD, Wu ZB. Nitrogen removal under the condition of carbon source supplement in Integrated Vertical-flow Constructed Wetland [J]. Environ Sci, 2009, 30 (11): 3300-3305]
49 李晓华, 李国会, 张燕生. 无机盐对乙酸底物甲烷发酵动力学的影响[J]. 农业工程学报, 2006, 22 (S2): 5-9 [Li XH, Li GH, Zhang YS. Effect of inorganic salton the aceticlastic methanogens methane fermentation kinetics [J]. Trans CSAE, 2006, 22 (S2): 5-9]
50 李东, 孙永明, 袁振宏, 孔晓英, 张宇. 有机垃圾组分中温厌氧消化产甲烷动力学研究[J]. 太阳能学报, 2010, 31 (3): 385-390 [Li D, Sun YM, Yuan ZH, Kong XY, Zhang Y. Kinetic study of the mesophilic anaerobic digestion of organic waste components [J]. Acta Energy Sin, 2010, 31 (3): 385-390]
51 谷士艳. 混合原料厌氧发酵产沼气动力学及工艺优化研究[D]. 沈阳: 沈阳农业大学, 2015 [Gu SY. Kinetics of anaerobic fermentation biogas production and process optimization research under use hybrid material [D]. Shenyang: Shenyang Agricultural University, 2015]

更新日期/Last Update: 2017-08-25