|本期目录/Table of Contents|

[1]王丽华,高景,王金牛,等.高山草地长花马先蒿的性状和生物量分配对坡向的适应[J].应用与环境生物学报,2017,23(04):648-657.[doi:10.3724/SP.J.1145.2016.08026]
 WANG Lihua,#,GAO Jing,et al.Repair activity of Gln336 on the in FAD binding domain of CPD photolyase in Dunaliella salina under stress[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):648-657.[doi:10.3724/SP.J.1145.2016.08026]
点击复制

高山草地长花马先蒿的性状和生物量分配对坡向的适应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年04期
页码:
648-657
栏目:
研究论文
出版日期:
2017-08-25

文章信息/Info

Title:
Repair activity of Gln336 on the in FAD binding domain of CPD photolyase in Dunaliella salina under stress
作者:
王丽华高景王金牛徐波孙建朱忠福许积层吴彦
1阿坝师范学院 阿坝 623202 2中国科学院成都生物研究所 成都 610041 3中国科学院大学 北京 100049 4国际山地综合发展中心 加德满都 5中国科学院地理科学与资源研究所 北京 100101 6九寨沟国家自然保护区管理局 阿坝 623400 7海口市土地测绘院 海口 570125
Author(s):
WANG Lihua1 2# GAO Jing2 3# WANG Jinniu2 4** XU Bo1 2 SUN Jian5 ZHU Zhongfu6 XU Jiceng7 & WU Yan 2**
1Aba Teachers University, Aba 623002, China 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3University of Chinese Academy Sciences, Beijing 100049, China 4International Center for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal 5Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 6Jiuzhaigou National Nature Reserve Administration, Aba 623400, China 7Haikou Land Surveying and Mapping Institute, Haikou 570125, China
关键词:
环境因子叶片性状株高权衡等速生长最优分配理论
Keywords:
environmental factor leaf trait plant height trade-off isometric scaling optimal partitioning theory
分类号:
Q949.777.808
DOI:
10.3724/SP.J.1145.2016.08026
摘要:
长花马先蒿(Pedicularis longiflora)是一种传统药用植物,广泛分布在高山草地及溪流旁等处. 为了更好地开发、利用和保护该药用植物,从植物性状和生物量分配着手,探讨其对环境变化的适应性,首先测定不同坡向基本环境因子,然后对比不同坡向长花马先蒿的叶片性状、叶片数目、株高及其之间的相关性和权衡关系,其次从生物量分配的角度探究该植物对不同坡向的适应对策,进而阐述该植物性状及生物量指标与环境因子的回归关系,最后从功能性状到个体生物量进行尺度上推. 结果表明,长花马先蒿主要通过调整比叶面积适应不同的坡向生境,西南坡植株的比叶面积为(175.272 ± 6.597)cm2/g,比东南坡植株大. 长花马先蒿成对器官生物量之间均为等速生长关系(α = 1),给定茎生物量时,西南坡植株的叶生物量相对更大,形成更有利于光合作用的适应对策,而东南坡植株更多地投入到繁殖器官,使种群得以更好延续,其生物量分配受等速生长关系的限制,同时在环境因子的影响下,存在着“最优分配”. 温度和群落内竞争是影响该植物性状和生物量分配的主要因素,从药用植物资源保育的角度考虑,长花马先蒿人工繁育过程需要适宜的生长温度,并减少群落内的物种竞争. 因此,在环境因子的作用下长花马先蒿的性状和生物量分配存在一定的权衡和适应,这可为该药用资源的开发和利用提供支撑. (图5 表5 参55)
Abstract:
The traditional Chinese herbal medicine Pedicularis longiflora is distributed in alpine meadows or beside streams as a typical alpine plant. For better protecting and utilizing P. longiflora, it is crucial to study its adaptation to environmental changes, which was investigated in this study with a focus on the differentiation of the plant functional traits and biomass allocation of P. longiflora at two slope aspects. By measuring the detailed environmental factors at two slope aspects in an alpine meadow of Mt. Kaka, the eastern Tibetan Plateau, firstly, leaf traits, leaf number, and plant height of P. longiflora as well as their correlation and trade-off relationships between the south-east and south-west slopes were compared. Secondly, the adaptation strategies of P. longiflora to comparable habitats were explored from the biomass partitioning perspective at different slope aspects. Furthermore, regression analysis was performed to assess the relationships among the traits, biomass indices, and environmental factors. Lastly, the study was scaled up from plant traits to individual biomass for comprehensive understanding of the ecological adaptability of P. longiflora. The results showed that P. longiflora mainly adapted to environmental changes through specific leaf area (SLA), which was 175.272 ± 6.597 cm2/g greater at the south-west slope than that of the individuals at the south-east slope. Isometric scaling (α = 1) existed in paired organ biomass of P. longiflora, indicating that genetic regulation played a crucial role in biomass partitioning. In addition, with fixed stem biomass, P. longiflora had relatively greater leaf biomass for better photosynthesis at the south-west slope than at the south-east slope. At the south-east slope, P. longiflora allocated more biomass to reproductive organs to enhance their population maintenance. Temperature and competition within the community were the major factors influencing and regulating biomass allocation and morphological traits of P. longiflora. Biomass allocation of P. longiflora was mainly constrained by the isometric scaling rule, while optimal partitioning also existed due to regulation of environmental factors. From the perspective of conserving and cultivating the alpine herbal medicine resource, temperature and species competition need to be carefully controlled in the community in the practical artificial breeding. Therefore, the results of this study showed trade-offs of P. longiflora traits and biomass allocation and adaptation to environmental changes, which provides basis for the development and utilization of this medicinal resource.

参考文献/References:

1 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31 (1): 150-165 [Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning [J]. Chin J Plant Ecol, 2007, 31 (1): 150-165]
2 Westoby M, Wright IJ. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species [J]. Oecologia, 2003, 135 (4): 621-628
3 Rozendaal DMA, Hurtado VH, Poorter L. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature [J]. Funct Ecol, 2006, 20 (2): 207-216
4 Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a mediterranean rangeland [J]. J Ecol, 2012, 100 (6): 1422-1433
5 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39 (4): 362-370 [Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou [J]. Chin J Plant Ecol,2015, 39 (4): 362-370]
6 Mccarthy MC, Enquist BJ. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation [J]. Funct Ecol, 2007, 21 (4): 713-720
7 Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control [J]. New phytologist, 2012, 193 (1): 30-50
8 Weiner J. Allocation, plasticity and allometry in plants [J]. Persp Plant Ecol Evol Syst, 2004, 6 (4): 207-215
9 平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报, 2010, 34 (1): 100-111 [Ping XY, Zhou GS, Sun JS. Advances in the study of photosythate allocation and its controls [J]. Chin J Plant Ecol, 2010, 34 (1): 100-111]
10 Marcelis LFM, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: a review [J]. Sci Horticult, 1998, 74 (1-2): 83-111
11 Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody-plants [J]. New Phytol, 1991, 119 (3): 345-360
12 刘金环, 曾德慧, Lee DK. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25 (8): 921-925 [Liu JH, Zeng DH, Lee DK. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land [J]. Chin J Ecol, 2006, 25 (8): 921-925]
13 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 祁连山高寒草地甘肃臭草叶性状与坡向间的关系[J]. 植物生态学报, 2015, 39 (1): 23-31 [Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG. Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China [J]. Chin J Plant Ecol, 2015, 39 (1): 23-31]
14 Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGaVD, Pausas JG, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Austr J Bot, 2003, 51 (4): 335-380
15 Falster DS, Westoby M. Plant height and evolutionary games [J]. Trends Ecol Evol, 2003, 18 (7): 337-343
16 孙建. 西藏高寒草地植被生物量及其分配机制研究[D]. 成都: 中国科学院水利部成都山地灾害与环境研究所, 2013 [Sun J. Study on the biomass characteristics and their allocation mechanism in Tibetan alpine grassland [D]. Chengdu: Institute of Mountain Hazard and Environment, Chinese Academy Science, 2013]
17 Niklas KJ, Enquist BJ. Invariant scaling relationships for interspecific plant biomass production rates and body size [J]. Proc Natl Acad Sci USA, 2001, 98 (5): 2922-2927
18 Niklas KJ. Modelling below- and above-ground biomass for non-woody and woody plants [J]. Ann Bot, 2005, 95 (2): 315-321
19 李春萍, 李刚, 肖春旺. 异速生长关系在陆地生态系统生物量估测中的应用 [J]. 世界科技研究与发展, 2007, 29 (2): 51-57 [Li CP, Li G, Xiao CW . The application of allometric relationships in biomass estimation in terrestrial ecosystems [J]. World Sci-Tech Res Dev, 2007, 29 (2): 51-57]
20 Cheng DL, Niklas KJ. Above- and below-ground biomass relationships across 1534 forested communities [J]. Ann Bot, 2007, 99 (1): 95-102
21 Wright IJ, Reich PB, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats [J]. Funct Ecol, 2001, 15 (4): 423-434
22 Enquist BJ, Niklas KJ. Global allocation rules for patterns of biomass partitioning in seed plants [J]. Science, 2002, 295 (5559): 1517-1520
23 K?rner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems [M]. 2nd ed. New York: Springer, 2003
24 Pauli H, Gottfried M, Lamprecht A, Niessner S, Rumpf S, Winkler M, Steinbauer K, Grabherr G. The Gloria Field Mannual-standard Multi-summit Approach, Supplementary Methods and Extra Approaches [M]. 5th ed. Vienna: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, 2015
25 Wipf S. Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations [J]. Plant Ecol, 2010, 207 (1): 53-66
26 吴彦, Onipchenko VG. 雪被对川西高山植被坡向性分异的影响[J]. 生态学报, 2007, 27 (12): 5120-5129 [Wu Y, Onipchenko VG. The impact of snow-cover on alpine vegetation type of different aspects in the west of Sichuan Province [J]. Acta Ecol Sin, 2007, 27 (12): 5120-5129]
27 Li X, Nie Y, Song X, Zhang R, Wang G. Patterns of species diversity and functional diversity along the south- to north-facing slope gradient in a sub-alpine meadow [J]. Commun Ecol, 2011, 12 (2): 179-187
28 刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J]. 应用生态学报, 2012, 23 (12): 3295-3300 [Liu MX, Ma JZ. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of South Gansu, Northwest China [J]. Chin J Appl Ecol, 2012, 23 (12): 3295-3300]
29 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1963 [Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 1963]
30 王长增, 贾忠建. 长花马先蒿核苷类成分研究[J]. 兰州大学学报, 1996, 32 (4): 91-95 [Wang CZ, Jia ZJ. Purine nucleosides from Pedicularis longiflora. J Lanzhou Univ, 1996, 32 (4): 91-95]
31 褚洪标, 谭宁华, 彭才圣. 马先蒿属植物研究概述[J]. 中国中药杂志, 2009, 34 (19): 2536-2546 [Chu HB, Tan NH, Peng CS. Progress in research on Pedicularis plants [J]. Chin J Chin Mat Med, 2009, 34 (19): 2536-2546]
32 Zhao XH, Han F, Li YL, Zhou GY, Yue HL. Semi-preparative separation and purification of three flavonoids from Pedicularis longiflora var. tubiformis (klotzsch) p. C. Tsoong by HSCCC [J]. J Liq Chromatogr Relat Technol, 2013, 36 (13): 1751-1761
33 Yatoo MI, Dimri U, Gopalakrishan A, Saminathan M, Dhama K, Mathesh K, Saxena A, Gopinath D, Husain S. Antidiabetic and oxidative stress ameliorative potential of ethanolic extract of pedicularis longiflora rudolph [J]. Int J Pharmacol, 2016, 12 (3): 177-187
34 陈哲, 周华坤, 赵新全, 温军, 叶鑫, 杨元武. 高寒草甸退化对甘肃马先蒿生长状况与花期资源分配的影响[J]. 生态环境学报, 2010, 19 (12): 2800-2807 [Chen Z, Zhou HK, Zhao XQ, Wen J, Ye X, Yang YW. The effect of alpine meadow degradation on Pedicularis kansuensis’s growth and resource allocation in blooming date [J]. Ecol Environ Sci, 2010, 19 (12): 2800-2807]
35 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛. 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响[J]. 应用生态学报, 2012, 23 (5): 1226-1232 [Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN. Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan Plateau, Southwest China [J]. Chin J Appl Ecol, 2012, 23 (5): 1226-1232]
36 Wang JN, Shi FS, Xu B, Wang Q, Wu Y, Wu N. Uptake and recovery of soil nitrogen by bryophytes and vascular plants in an alpine meadow [J]. J Mount Sci, 2014, 11 (2): 475-484
37 Liu L, Wu Y, Wu N, Xu JJ, Mao Y, Luo P, Zhang L. Effects of freezing and freeze-thaw cycles on soil microbial biomass and nutrient dynamics under different snow gradients in an alpine meadow (Tibetan Plateau) [J]. Pol J Ecol, 2010, 58 (4): 717-728
38 Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, Ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. New handbook for standardised measurement of plant functional traits worldwide [J]. Austr J Bot, 2013, 61 (3): 167-234
39 高景, 徐波, 王金牛, 周海燕, 王彦星, 吴彦. 南方灌草丛典型灌木不同叶片性状的相关性及其对不同光环境的响应[J]. 生态学杂志, 2015, 34 (9): 2424-2431 [Gao J, Xu B, Wang JN, Zhou HY, Wang YX, Wu N. Correlations among leaf traits of typical shrubs and their responses to different light environments in shrub-grassland of southern China [J]. Chin J Ecol, 2015, 34 (9): 2424-2431]
40 Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Lavorel S, Diaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ. Specific leaf area and dry matter content estimate thickness in laminar leaves [J]. Ann Bot, 2005, 96 (6): 1129-1136
41 Bradford JB, D’amato AW. Recognizing trade-offs in multi-objective land management [J]. Front Ecol Environ, 2012, 10 (4): 210-216
42 Sun J, Wang HM. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau [J]. Ecol Ind, 2016, 60:1070-1076
43 Lu N, Fu BJ, Jin TT, Chang RY. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes [J]. Landscape Ecol, 2014, 29 (10): 1697-1708
44 Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry [J]. Biol Rev Cambr Philos Soc, 2006, 81 (2): 259-291
45 Warton DI, Weber NC. Common slope tests for bivariate errors-in-variables models [J]. Biometr J, 2002, 44 (2): 161-174
46 Falster DS, Warton DI, Wright IJ. User’s Guide to Smatr: Standardised Major Axis Tests & Routines [M]. 2006. http://wwwbiomqeduau/ecology/SMATR
47 陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23 (2): 38-48 [Tao Y, Zhang YM. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China [J]. Acta Pratacult Sin, 2014, 23 (2): 38-48]
48 Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR. Global patterns in plant height [J]. J Ecol, 2009, 97 (5): 923-932
49 Reekie EG, Bazzaz FA. Reproductive Allocation in Plants [M]. Burlington: Academic Press, 2005
50 丁建林, 韩越, 包维楷, 向双. 岷江百合的生物量分配对策及其海拔效应[J]. 应用与环境生物学报, 2014, 20 (2): 254-260 [Ding JL, Han Y, Bao WK, Xiang S. Biomass allocation strategies of Lilium regale and their altitudinal effects. Chin J Appl Environ Biol, 2014, 20 (2): 254-260]
51 李钰, 赵成章, 侯兆疆, 马小丽, 张茜. 高寒退化草地狼毒种群个体大小与茎、叶的异速生长[J]. 生态学杂志, 2013, 32 (2): 241-246 [Li Y, Zhao CZ, Hou ZJ, Ma XL, Zhang Q. Body size and stem- and leaf allometry of Stellera chamaejasme in degraded alpine grassland [J]. Chin J Ecol, 2013, 32 (2): 241-246]
52 Vogel JG, Bond-Lamberty BP, Schuur EaG, Gower ST, Mack MC, O’connell KEB, Valentine DW, Ruess RW. Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation [J]. Global Change Biol, 2008, 14 (7): 1503-1516
53 Wang XP, Fang JY, Zhu B. Forest biomass and root-shoot allocation in northeast china [J]. For Ecol Manage, 2008, 255 (12): 4007-4020
54 Berendse F, Moller F. Effects of competition on root-shoot allocation in plantago lanceolata l.: adaptive plasticity or ontogenetic drift? [J]. Plant Ecol, 2009, 201 (2): 567-573
55 Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML. Consistency of species ranking based on functional leaf traits [J]. New Phytol, 2001, 152 (1): 69-83

相似文献/References:

[1]黄绍松,徐润林,马林,等.关键环境因子对嗜肺军团菌(Legionella pneumophila)在嗜热四膜虫(Tetrahymena thermophila)[J].应用与环境生物学报,2007,13(04):510.
 HUANG Shaosong,et al..Effect of Pivotal Environmental Factors on Intracellular Proliferation of Legionella pneumophila within Tetrahymena thermophila BF1[J].Chinese Journal of Applied & Environmental Biology,2007,13(04):510.
[2]杨艳刚,江源,张文涛,等.芦芽山林线附近华北落叶松茎干生长特征及其与环境因子的关系[J].应用与环境生物学报,2009,15(02):169.[doi:10.3724/SP.J.1145.2009.00169]
 YANG Yangang,JIANG Yuan,et al.Stem Radial Growth Features of Larix principis-rupprechtii Responding to Environmental Factors at the Treeline of Mt. Luya, Shanxi, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):169.[doi:10.3724/SP.J.1145.2009.00169]
[3]王春明,李大平,王春莲.微杆菌3-28对萘、菲、蒽、芘的降解[J].应用与环境生物学报,2009,15(03):361.[doi:10.3724/SP.J.1145.2009.00361]
 WANG Chunming,LI Daping,WANG Chunlian.Biodegradation of Naphthalene, Phenanthrene, Anthracene and Pyrene by Microbacterium sp. 3-28[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):361.[doi:10.3724/SP.J.1145.2009.00361]
[4]赵永强,曾江宁,陈全震,等.椒江河口滩涂贝类时空分布与环境因子的关系[J].应用与环境生物学报,2009,15(06):808.[doi:10.3724/SP.J.1145.2009.00808]
 ZHAO Yongqiang,ZENG Jiangning,CHEN Quanzhen,et al.Relationship of Environmental Factors with Temporal and Spatial Distribution of Macrobenthic Mollusks at a Tide Flat of Jiaojiang River Estuary[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):808.[doi:10.3724/SP.J.1145.2009.00808]
[5]杜萍,徐晓群,刘晶晶,等.椒江口春、秋季浮游动物分布特征及与主要环境因子的关系[J].应用与环境生物学报,2011,17(04):486.[doi:10.3724/SP.J.1145.2011.00486]
 DU Ping,XU Xiaoqun,LIU Jingjing,et al.Distribution of Zooplankton in the Jiaojiang Estuary and Its Response to Environment Factors in Spring and Autumn[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):486.[doi:10.3724/SP.J.1145.2011.00486]
[6]游巍斌,林巧香,何东进,等.天宝岩自然保护区森林景观格局与环境关系的尺度效应分析[J].应用与环境生物学报,2011,17(05):638.[doi:10.3724/SP.J.1145.2011.00638]
 YOU Weibin,LIN Qiaoxiang,HE Dongjin,et al.Scale Effect of Relationship Between Forest Landscape Pattern and Environmental Factors in the Tianbaoyan Nature Reserve, China[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):638.[doi:10.3724/SP.J.1145.2011.00638]
[7]刘乐冕,杨军,余小青,等.厦门后溪流域沿城乡梯度浮游细菌多样性及其与环境因子的关系[J].应用与环境生物学报,2012,18(04):591.[doi:10.3724/SP.J.1145.2012.00591]
 LIU Lemian,YANG Jun,YU Xiaoqing,et al.Bacterioplankton Diversity in Xiamen Houxi River Watershed Along an Urban - rural Gradient and Its Relation to Environmental Factors[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):591.[doi:10.3724/SP.J.1145.2012.00591]
[8]王宗兴,韦钦胜,刘军,等.乳山湾外海夏季大型底栖动物分布与环境因子的典范对应分析[J].应用与环境生物学报,2012,18(04):599.[doi:10.3724/SP.J.1145.2012.00599]
 WANG Zongxing,WEI Qinsheng,LIU Jun,et al.Canonical Correspondence Analysis on Macrobenthos Community in Summer and Its Environment in the Offshore Water of Rushan Bay[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):599.[doi:10.3724/SP.J.1145.2012.00599]
[9]石福习,赵成章,任珩,等.祁连山北坡自然恢复杨桦林地植物功能型组成及其影响因素[J].应用与环境生物学报,2012,18(04):546.[doi:10.3724/SP.J.1145.2012.00546]
 SHI Fuxi,ZHAO Chengzhang,REN Heng,et al.Plant Functional Types and Their Impact Environmental Factors in a Naturally Recovered Poplar - birch Woodland on the North Slope of Qilian Mountains, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):546.[doi:10.3724/SP.J.1145.2012.00546]
[10]刘银银,李峰,孙庆业,等.湿地生态系统土壤微生物研究进展[J].应用与环境生物学报,2013,19(03):547.[doi:10.3724/SP.J.1145.2013.00547]
 LIU Yinyin,LI Feng,SUN Qingye,et al.Review on the Study of Soil Microorganisms in Wetland Ecosystems[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):547.[doi:10.3724/SP.J.1145.2013.00547]

更新日期/Last Update: 2017-08-25