|本期目录/Table of Contents|

[1]刘建,高平,张艳艳,等.生活污水有机负荷率对连续流单室无膜微生物电解池性能的影响[J].应用与环境生物学报,2017,23(03):415-419.[doi:2016.07019]
 LIU Jian,GAO Ping,ZHANG Yanyan,et al.Influence of domestic wastewater organic loading rate on performance in a continuous membraneless single-chambered microbial electrolysis cell[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):415-419.[doi:2016.07019]
点击复制

生活污水有机负荷率对连续流单室无膜微生物电解池性能的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
415-419
栏目:
研究论文
出版日期:
2017-06-25

文章信息/Info

Title:
Influence of domestic wastewater organic loading rate on performance in a continuous membraneless single-chambered microbial electrolysis cell
作者:
刘建高平张艳艳吴亭亭李大平
1四川大学生命科学学院 成都 610064 2中国科学院成都生物研究所 成都 610041
Author(s):
LIU Jian GAO Ping ZHANG Yanyan WU Tingting & LI Daping
1School of Life Sciences, Sichuan University, Chengdu 610064, China 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
连续流微生物电解池有机负荷率生活污水甲烷能耗
Keywords:
continuous-flow microbial electrolysis cell organic loading rate domestic wastewater methane energy consumption
分类号:
X172 : X703
DOI:
2016.07019
摘要:
连续流微生物电解池能有效应用于污水处理中,为了解不同有机负荷率(OLR)对单室微生物电解池(MEC)性能的影响,采用连续流方式,以生活污水为基质,研究恒定外加电压0.6 V、不同OLR(810、920、1 080、1 484、1 680、2 531、2 780 mg L-1 d-1)情形下化学需氧量(COD)去除率、甲烷(CH4)产率及能耗等. 结果表明,随着OLR增加,COD去除率和能量消耗呈降低趋势,而CH4产率呈增加趋势. 实验初期,外加电压为0.6 V,进水COD浓度为200 mg/L,MEC对COD去除率达到70%,而厌氧消化(AD)只能达到41%,此时MEC中CH4含量为8.39%,而AD只有6.44%. 实验过程中,外加电压为0.6 V,OLR为2 780 mg L-1 d-1时,CH4产率达到了(126.72 ± 0.30)mL L-1 d-1,而能量消耗为(0.032 0 ± 0.005 2)kW h/kgCOD. 菌群高通量分析结果显示,MEC阳极碳毡的优势菌群为Methanothrix sp.和Geobacter sp.,其丰度分别为39.05%和21.83%,而AD组相应丰度只占2.00%和11.76%. 综上,MEC可以在低能耗下有效处理低浓度生活污水并同步产CH4,这为生活污水处理提供了新的思路. (图4 表1 参35)
Abstract:
In order to investigate the effects of organic loading rate (OLR) on the performance of microbial electrolysis cells (MEC), a continuous membraneless single-chambered MEC was adopted to treat domestic wastewater. With the change of organic loading rate (OLR = 810, 920, 1 080, 1 484, 1 680, 2 531, or 2 780 mg L-1 d-1), the methane production rate, chemical oxygen demand (COD) removal rate, and energy consumption were examined at a constant voltage of 0.6 V. The results showed that methane production rate increased with increasing OLR, while the COD removal rate and energy consumption decreased. At the onset of the experiments, the influent COD concentration was 200 mg L-1 d-1, the applied voltage was 0.6 V, the COD removal rate was 70%, and the methane concentration was 8.39%, compared with anaerobic digestion (AD), in which the COD removal rate and methane concentration were 41% and 6.44%, respectively. When the OLR was 2 780 mg L-1 d-1, the methane production rate could reach 126.72 ± 0.30 mL L-1 d-1 at a relatively low energy consumption of 0.0320 ± 0.0052 kW h/kg COD. Analysis of high-throughput sequencing indicated that the dominant bacteria in the carbon felt of the anode chamber were Methanothrix sp. and Geobacter sp., which were 39.05% and 21.83%, respectively, of all bacteria present. Under the same conditions, in AD group the corresponding content was 2.00% and 11.76%, respectively. A continuous membraneless single-chambered MEC could be successfully used to treat domestic wastewater and provide enhanced methane production at a relatively low energy consumption.

参考文献/References:

1 Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures [J]. Bioresour Technol, 2010, 101 (2): 469-475
2 Jin L, Zhang G, Tian H. Current state of sewage treatment in China [J]. Water Res, 2014, 66: 85-98
3 Heidrich ES, Curtis TP, Dolfing J. Determination of the internal chemical energy of wastewater [J]. Environ Sci Technol, 2010, 45 (2): 827-832
4 Moreno R, San-Martín MI, Escapa A, Morán A. Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell [J]. Ren Energy, 2016, 93: 442-448
5 Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J, 2007, 1 (1): 9-18
6 Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285
7 Wagner RC, Regan JM, Oh S E, Zuo Y, Logan BE. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res, 2009, 43 (5): 1480-1488
8 Escapa A, San-Martín MI, Morán A. Potential use of microbial electrolysis cells in domestic wastewater treatment plants for energy recovery [J]. Fuel cells, 2014, 2: 19
9 Sasaki K, Sasaki D, Morita M, Hiranos S, Matsumoto N, Ohmura N, Igarashi Y. Bioelectrochemical system stabilizes methane fermentation from garbage slurry [J]. Bioresour Technol, 2010, 101 (10): 3415-3422
10 Gil-Carrera L, Escapa A, Carracedo B, Morán A, Gómez X. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages [J]. Bioresour Technol, 2013, 146: 63-69
11 Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells [J]. Bioresour Technol, 2015, 175: 68-74
12 Ran Z, Gefu Z, Kumar JA. , Chaoxiang L, Xu H, Lin, L. Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor [J]. Int J Hydrogen Energy, 2014, 39 (25): 13498-13504
13 Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ. Principle and perspectives of hydrogen production through biocatalyzed electrolysis [J]. Int J Hydrogen Energy, 2006, 31 (12): 1632-1640
14 Tartakovsky B, Manuel MF, Neburchilov V, Wang H, Guiot SR. Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode [J]. J Power Sources, 2008, 182 (1): 291-297
15 Escapa A, Manuel MF, Morán A, Gómez X, Guiot SR, Tartakovsky B. Hydrogen production from glycerol in a membraneless microbial electrolysis cell [J]. Energy Fuels, 2009, 23 (9): 4612-4618
16 Yin Q, Zhu X. , Zhan G, Bo T, Yang Y, Tao Y, He X, Li D , Yan, Z. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina [J]. J Environ Sci, 2016, 42: 210-214
17 Ding A, Yang Y, Sun G, Wu D. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC) [J]. J Chem Eng, 2016, 283: 260-265
18 Feng Y, Zhang Y, Chen S, Quan X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode [J]. J Chem Eng, 2015, 259: 787-794
19 Zhang Y, Merrill MD, Logan BE. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells [J]. Int J Hydrogen Energy, 2010, 35 (21): 12020-12028
20 Pocaznoi D, Calmet A, Etcheverry L, Erable B, Bergel A. Stainless steel is a promising electrode material for anodes of microbial fuel cells [J]. Energy Environ Sci, 2012, 5 (11): 9645-9652
21 杨彦飞, 杨暖, 薄涛, 李大平, 尹琦, 向元英. 连续流微生物电解池处理有机废水同步生产甲烷[J]. 应用与环境生物学报, 2015, 21 (5): 854-859 [Yang YF, Yang N, Bao T, Li DP, Yin Q, Xiang YY. Organic wastewater treatment and methane production in a continuous-flow microbial electrolysis cell [J]. Chin J Appl Environ Biol, 2015, 21 (5): 854-859]
22 Ivanov I, Ren L, Siegert M, Logan BE. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment [J]. Int J Hydrogen Energy, 2013, 38 (30): 13135-13142
23 Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan, BE. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater [J]. Appl Microbiol Biotechnol, 2011, 89 (6): 2053-2063
24 Ditzig J, Liu H, Logan BE. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) [J]. Int J Hydrogen Energy, 2007, 32 (13): 2296-2304
25 Escapa A, Gil-Carrera L, García V, Morán A. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater [J]. Bioresour Technol, 2012, 117: 55-62
26 Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE. Source of methane and methods to control its formation in single chamber microbial electrolysis cells [J]. Int J Hydrogen Energy, 2009, 34 (9): 3653-3658
27 Lee HS, Rittmann BE. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell [J]. Environ Sci Technol, 2009, 44 (3): 948-954
28 Escapa A, San-Martín MI, Mateos R, Morán A. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations [J]. Bioresour Technol, 2015, 180: 72-78
29 Zeppilli M, Villano M, Aulenta F, Lampis S, Vallini G, Majone M. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell [J]. Environ Sci Pol Res, 2015, 22 (10): 7349-7360
30 Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L, Vanbroekhoven K. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects [J]. Ren SustainEnergy Rev, 2011, 15 (2): 1305-1313
31 Cusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters [J]. Int J Hydrogen Energy, 2010, 35 (17): 8855-8861
32 Gil-Carrera L, Escapa, A, Moreno R, Morán A. Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell [J]. J Environ Manage, 2013, 122: 1-7
33 Peng L, Zhang XT, Yin J, Xu SY, Zhang Y, Xie DT, Li ZL. Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer [J]. Electrochim Acta, 2016, 191: 743-749
34 Rotatu AE, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree Mallory, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energy Environ Sci, 2014, 7 (1): 408-415
35 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090

相似文献/References:

[1]杨彦飞,杨暖,薄涛,等.连续流微生物电解池处理有机废水同步生产甲烷[J].应用与环境生物学报,2015,21(05):854.[doi:10.3724/SP.J.1145.2015.02022]
 YANG Yanfei,YANG Nuan,BO Tao,et al.Organic?wastewater?treatment?and?methane?production?in?a continuous-flow?microbial?electrolysis?cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):854.[doi:10.3724/SP.J.1145.2015.02022]

更新日期/Last Update: 2017-06-25