|本期目录/Table of Contents|

[1]裴晓芳,沈文丽,由胜男,等.Trichosporon montevideense WIN提取物合成纳米金及其对硝基芳烃的催化特性[J].应用与环境生物学报,2017,23(03):409-414.[doi:2016.06004]
 PEI Xiaofang,SHEN Wenli,YOU Shengnan,et al.Biosynthesis of gold nanoparticles by the cell-free extracts of Trichosporon?montevideense WIN for catalytic reduction of nitroaromatics[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):409-414.[doi:2016.06004]
点击复制

Trichosporon montevideense WIN提取物合成纳米金及其对硝基芳烃的催化特性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
409-414
栏目:
研究论文
出版日期:
2017-06-25

文章信息/Info

Title:
Biosynthesis of gold nanoparticles by the cell-free extracts of Trichosporon?montevideense WIN for catalytic reduction of nitroaromatics
作者:
裴晓芳沈文丽由胜男厉舒祯张照婧王经伟张旭旺曲媛媛
大连理工大学环境学院,工业生态与环境工程教育部重点实验室 大连 116024
Author(s):
PEI Xiaofang SHEN Wenli YOU Shengnan LI Shuzhen ZHANG Zhaojing WANG Jingwei ZHANG Xuwang & QU Yuanyuan
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
关键词:
纳米金生物合成Trichosporon?montevideense硝基芳烃催化活性
Keywords:
gold nanoparticles biosynthesis?Trichosporon?montevideense nitroaromatics catalytic activity
分类号:
X172
DOI:
2016.06004
摘要:
利用生物及其提取物合成纳米金具有反应条件温和、环境友好等优点. 以菌株Trichosporon?montevideense WIN提取物合成纳米金(AuNPs),考察反应时间、pH和提取物浓度对纳米金合成的影响,并探讨纳米金催化还原硝基芳烃的特性. 结果显示,纳米金合成过程可在7 d内稳定,最优pH为7.0,最适提取物浓度为300 mg/L. 通过紫外-可见光谱扫描、透射电子显微镜和傅立叶转换红外线光谱分析可知,纳米金为球形和伪球形,尺寸分布范围为4-35 nm,平均粒径为(18.2 ± 0.4)nm,推测提取物中的羟基、氨基和羧基参与了纳米金的还原和稳定过程. 纳米金对2-硝基苯酚、3-硝基苯酚、4-硝基苯酚、2-硝基苯胺和3-硝基苯胺具有良好的催化活性,其催化反应速率常数分别为7.5 × 10-3 s-1、6.4 × 10-3 s-1、9.1 × 10-3 s-1、11.8 × 10-3 s-1和20.7 × 10-3 s-1. 本研究表明T.?montevideense WIN在生物合成纳米金方面具有潜在的应用价值,且合成的生物纳米金能够有效应用于硝基芳烃污染物的催化还原. (图6 表1 参19)
Abstract:
Biological synthesis of gold nanoparticles (AuNPs) using organisms and their extracts has been attracting more and more attention owing to its advantages of mild conditions and environmentally friendly nature. In this study, cell-free extracts of Trichosporon montevideense WIN were used to biosynthesize AuNPs. Different parameters including reaction time, pH, and the concentration of extracts were optimized for the biosynthesis of AuNPs. UV-vis spectrophotometry, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the as-synthesized AuNPs. The reduction of nitroaromatics catalyzed by AuNPs was also investigated. The results showed that AuNPs synthesis by the cell-free extracts of strain WIN became stable within 7 days. The optimal conditions for the biosynthesis of AuNPs were pH 7.0 and 300 mg/L cell-free extracts. TEM images revealed that the AuNPs were spherical and pseudo-spherical with particle sizes ranging from 4 to 35 nm, and the average size of nanoparticles was found to be 18.2 ± 0.4 nm. FTIR spectra showed that hydroxyl, amide, and carboxyl groups might be involved in the formation of AuNPs. The biosynthesized AuNPs had excellent catalytic activities for reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2-nitroaniline, and 3-nitroaniline, with catalytic rate constants of 7.5 × 10-3 s-1, 6.4 × 10-3 s-1, 9.1 × 10-3 s-1, 11.8 × 10-3 s-1, and 20.7 × 10-3 s-1, respectively. The present study indicates that T. montevideense WIN may be a potential candidate for green synthesis of AuNPs that have high catalytic activities for reduction of nitroaromatics.

参考文献/References:

1 Pereira L, Mehboob F, Stams AJM, Mota MM, Rijnaarts HHM, Alves MM. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation [J]. Crit Rev Biotechnol, 2015, 35 (1): 114-128
2 Schr?fel A, Krato?ová G, ?afa?ík I, ?afa?íková M, Ra?ka I, Shor LM. Applications of biosynthesized metallic nanoparticles–A review [J]. Acta Biomater, 2014, 10 (10): 4023-4042
3 Adil SF, Assal ME, Khan M, Al-Warthan A, Siddiqui MRH, Liz-Marzán LM. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry [J]. Dalton Trans, 2015, 44 (21): 9709-9717
4 Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: current trends and applications [J]. Crit Rev Biotechnol, 2012, 32 (1): 49-73
5 Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum [J]. ChemBioChem, 2002, 3 (5): 461-463
6 Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. [J]. J Biomed Nanotechnol, 2005, 1 (1): 47-53
7 Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SII. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells [J]. Appl Microbiol Biotechnol, 2011, 92 (3): 617-630
8 Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R. Bioreduction of AuCl4? ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed [J]. Angew Chem Int Ed Engl, 2001, 40 (19): 3585-3588
9 Shen WL, Qu YY, Pei XF, Zhang XW, Ma Q, Zhang ZJ, Li SZ, Zhou JT. Green synthesis of gold nanoparticles by a newly isolated strain Trichosporon montevideense for catalytic hydrogenation of nitroaromatics [J]. Biotechnol Lett, 2016, 38 (9): 1503-1508.
10 Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract [J]. Green Chem, 2012, 14 (5): 1322-1334
11 Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes [J]. J Mater Chem, 2003, 13 (7): 1822-1826
12 Yang CX, Sun XY, Liu B. Controllable synthesis of chitosan-mediated gold nanoplate and the growth mechanisms [J]. Acta Chim Sin, 2012, 70 (3): 259-264
13 Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589 [J]. Mater Lett, 2009, 63 (15): 1231-1234
14 Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589 [J]. Colloids Surf B Biointerfaces, 2009, 74 (1): 309-316
15 Mishra P, Ray S, Sinha S, Das B, Khan MI, Behera SK, Yun SII, Tripathy SK, Mishra A. Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition [J]. Biochem Eng J, 2016, 105: 264-272
16 Shi CH, Zhu NG, Cao YL, Wu PX. Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline [J]. Nanoscale Res Lett, 2015, 10 (1): 1-8
17 Zhang XW, Qu YY, Shen WL, Wang JW, Li HJ, Zhang ZJ, Li SZ, Zhou JT. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols [J]. Colloids Surf A Physicochem Eng Asp, 2016, 497: 280-285
18 Rashid MH, Bhattacharjee RR, Kotal A, Mandal TK. Synthesis of spongy gold nanocrystals with pronounced catalytic activities [J]. Langmuir, 2006, 22 (17): 7141-7143
19 Narayanan KB, Sakthivel N. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol [J]. J Hazard Mater, 2011, 189 (1-2): 519-525

相似文献/References:

[1]马桥,曲媛媛,张旭旺,等.靛蓝的微生物合成研究新进展[J].应用与环境生物学报,2012,18(02):344.[doi:10.3724/SP.J.1145.2012.00344]
 MA Qiao,QU Yuanyuan**,ZHANG Xuwang,et al.Recent Advances in Microbial Synthesis of Indigo[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):344.[doi:10.3724/SP.J.1145.2012.00344]
[2]许炳雯,李诗阳,张强,等.细菌芳烃外二醇双加氧酶研究进展[J].应用与环境生物学报,2012,18(05):873.[doi:10.3724/SP.J.1145.2012.00873]
 XU Bingwen,LI Shiyang,ZHANG Qiang,et al.Advance in Research on Bacterial Aromatic Extradiol Dioxygenase[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):873.[doi:10.3724/SP.J.1145.2012.00873]
[3]苏敏,蒋永,张尧,等.生物电化学耦合H2还原CO2合成简单有机物[J].应用与环境生物学报,2013,19(05):827.[doi:10.3724/SP.J.1145.2013.00827]
 SU Min,JIANG Yong,ZHANG Yao,et al.Coupled Bioelectrochemical System for Reducing CO2 to Simple Organic Compounds in the Presence of H2[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):827.[doi:10.3724/SP.J.1145.2013.00827]
[4]李筱筱,刘炜,咸漠,等.大肠杆菌乙酰酯酶(AES)的酶学性质[J].应用与环境生物学报,2017,23(06):1011.[doi:10.3724/SP.J.1145.2016.12009]
 LI Xiaoxiao,LIU Wei,XIAN Mo & WANG Wei**.Characterization of Escherichia coli acetyl esterase (AES) activity[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):1011.[doi:10.3724/SP.J.1145.2016.12009]

更新日期/Last Update: 2017-06-25