|本期目录/Table of Contents|

[1]李静,张金羽,张琪,等.玉米根际无机磷溶解菌的筛选与促生特性[J].应用与环境生物学报,2019,25(02):378-384.[doi:10.19675/j.cnki.1006-687x.2018.06005]
 LI Jing,ZHANG Jinyu,ZHANG Qi,et al.Screening and analysis of plant growth-promoting properties in inorganic phosphate-solubilizing bacteria from maize rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):378-384.[doi:10.19675/j.cnki.1006-687x.2018.06005]
点击复制

玉米根际无机磷溶解菌的筛选与促生特性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
378-384
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Screening and analysis of plant growth-promoting properties in inorganic phosphate-solubilizing bacteria from maize rhizosphere
作者:
李静张金羽张琪张潇月李玥李成成程雪芬赵珂
1四川农业大学资源学院 成都 611130 2四川农业大学生命科学学院 雅安 625000
Author(s):
LI Jing1 ZHANG Jinyu1 ZHANG Qi2 ZHANG Xiaoyue1 LI Yue1 LI Chengcheng1 CHENG Xuefen1 & ZHAO Ke1**
1 College of Resource and Environment, Sichuan Agricultural University, Chengdu 611130, China 2 College of Life sciences, Sichuan Agricultural University, Ya’an, 625000, China
关键词:
玉米根际无机磷溶解菌筛选促生
Keywords:
maize rhizosphere inorganic phosphate-solubilizing bacteria screening plant growth promoting
分类号:
S154.39
DOI:
10.19675/j.cnki.1006-687x.2018.06005
摘要:
从玉米根际土中筛选对无机磷具有高效溶解作用和促生功能的菌株,以向微生物肥料的开发提供菌株资源. 采用溶磷圈法从玉米根际土中筛选溶磷菌株,采用钼锑抗比色法进一步测定菌株的溶磷能力. 通过对菌株产吲哚-3-乙酸(IAA)、产铁载体、固氮、产几丁质酶能力及抗菌活性进行检测,综合评价溶磷菌的促生能力,并通过盆栽实验探索单一菌株及复合菌系对玉米促生的潜能. 共筛选获得34株溶磷菌,其溶磷量为33.74-273.44 mg/L;34株菌中有10株菌(29.41%)同时具有3种及以上的促生功能,菌株PSM16、PSM27、PSM30同时具有4种促生功能;18株菌(52.94%)对不同供试病原菌表现出不同程度的抗性,菌株PSM12、PSM22、PSM25、PSM27、PSM34对5种目标病原菌同时具有抑菌作用;盆栽结果显示在土壤有效磷缺乏的条件下,经菌株PSM01、PSM12、PSM16及复合菌系处理后的玉米植株的株高、物质量、根系发达程度均显著提高(P < 0.05),促生效果显著,且能提高土壤有效磷含量,复合菌系的效果更优. 16S rRNA基因测序结果显示,PSM01、PSM12、PSM16分别属于Bacillus aryabhattai、Paenibacillus silvae、Pseudomonas moorei. 本研究为溶磷菌剂的开发提供了菌种资源,所构建的复合菌系具有较好的应用前景. (图4 表4 参43)
Abstract:
This study was designed to screen the inorganic phosphate-solubilizing bacteria (PSB) plant growth promoting capacity from maize rhizosphere to provide strain resources for the development and production of microbial fertilizer. This was based on the halo formation of screening medium to identify the phosphate solubilizing capacities of isolates. The Mo-Sb method was used to further analyze the phosphate solubilizing activity of the strains. The plant growth promoting properties of strains were evaluated by the production of indole-3-acetic acid (IAA), siderophore, N2-fixation, production chitinase, and antimicrobial activity. Pot experiments were employed to evaluate the potential plant growth promoting ability of pure culture and microbial consortia of PSB. The results showed the isolation of 34 strains from the maize rhizosphere that showed phosphate solubilizing activity. The amount of phosphate solubilization by isolates ranged from 33.74 mg/L to 273.44 mg/L. Ten strains (29.41%) possessed at least three of the plant growth promoting properties. Strains PSM16, PSM27, and PSM30 harbored plant growth promoting properties including the production of IAA, siderophore, chitinase, and nitrogen fixing ability. A total of 18 strains (52.94%) showed antimicrobial activity, and strains PSM12, PSM22, PSM25, PSM27, and PSM34 possessed antimicrobial activity against 5 pathogens. Pot experiments showed that the PSM01, PSM12, PSM16, and PSB consortia all increased the maize biomass, promoted the height and root growth significantly (P < 0.05) under available phosphorus deficiency, and improved soil available phosphorus. The best results were observed in the PSB consortia. The 16S rRNA gene sequences analysis demonstrated that the strains PSM01, PSM12, and PSM16 belonged to Bacillus aryabhattai, Paenibacillus sylvae, and Pseudomonas moorei, respectively. This study provides strain resources for the development of biofertilizer and indicates that the PBS consortia is a good candidate to be applied as a biofertilizer to enhance soil fertility and promote plant growth.

参考文献/References:

1. 胡山, 牛世全, 龙洋, 李渭娟, 赵丹, 豆建涛. 河西走廊盐碱土壤中一株高效溶磷菌的鉴定及条件优化[J]. 微生物学通报, 2017, 44 (2): 358-365 [Hu S, Niu SQ, Long Y, Li WJ, Zhao D, Dou JT. Identification of an efficient phosphorus solubilizing bacteria from saline-alkali soil in the Hexi Corridor and optimization of its condition [J]. Microbiology, 2017, 44 (2): 358-365]
2. 银婷婷, 王敬敬, 柳影, 梁亚杰, 王兴彪, 韩一凡, 王夏, 程美娟, 黄志勇. 高效解磷菌的筛选及其促生机制的初步研究[J]. 生物技术通报, 2015, 31 (12): 234-242 [Yin TT, Wang JJ, Liu Y, Liang YJ, Wang XB, Han YF, Wang X, Cheng MJ, Huang ZY. The screening of efficient phosphorus-solubilizing bacteria and the primary study on its mechanism of plant-growth-prooting [J]. Biot Bull, 2015, 31 (12): 234-242]
3. 朱斌. 玉米根际高效溶磷菌株的分离鉴定、室内溶磷条件和溶磷效果研究[D]. 重庆: 西南大学, 2012 [Zhu B. The study of high dissolved phosphorus isolation identification, conditions of indoor dissolved phosphorus and dissolved [D]. Chongqing: Southwest University, 2012]
4. Whitelaw MA, Harden TJ, Helyar KR. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum [J]. Soil Biol Biochem, 1999, 31 (5): 655-665
5. Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biol Biochem, 2010, 42 (5): 669-678
6. Whipps JM. Microbial interactions and biocontrol in the rhizosphere [J]. J Expl Bot, 2001, 52 (Spec Issue): 487-511
7. 马海林, 邢尚军, 刘方春, 陈波, 丁延芹, 姚良同, 杜秉海. 冬枣(Ziziphus jujube Mill.)根际3株促生细菌的筛选与鉴定[J]. 应用与环境生物学报, 2013, 19 (4): 100-104 [Ma HL, Xing SJ, L, Chen B, Ding YQ, Yao LT, Du BH. Screening and identification of three plant growth-promoting rhizobacteria from winter jujube (Ziziphus jujube Mill.) rhizosphere [J]. Chin J Appl Environ Biol, 2013, 19 (4): 100-104]
8. 余悦. 黄河三角洲原生演替中土壤微生物多样性及其与土壤理化性质关系[D]. 济南: 山东大学, 2012 [Yu R. Relationship between soil microbial diversity and soil physicochemical properties along the primary succession of Yellow River Delta [D]. Ji’nan: Shandong University, 2012]
9. 王荣民, 杨艳, 管业坤, 张国生, 刘继明, 林春斌. 土著菌种的采集培养及菌种分析[J]. 江西畜牧兽医杂志, 2013, (6): 11-14 [Wang RM, Yang Y, Guan YK, Zhang GS, Liu JM, Lin CB. Collection, culture and strain analysis of indigenous bacteria [J]. Jiangxi J Anim Husb Vet Med, 2013, (6): 11-14]
10. Belimov AA, Kojemiakov AP, Chuvarliyeva CV. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria [J]. Plant Soil, 1995, 173 (1): 29-37
11. 乔志伟, 洪坚平, 刘超. 最佳组合溶磷细菌的筛选及培养条件的优化[J]. 中国土壤与肥料, 2017, (5): 141-146 [Qiao ZW, Hong JP, Liu C. Screening the best combination of phosphobacteria and optimization of its culture conditions[J]. Soils Fert Sci China, 2017 (5): 141-146]
12. Clegg S, Gobran G.R. Rhizospheric P and K in forest soil manipulated with ammonium sulfate and water [J]. Can J Soil Sci, 1997, 77 (4): 525-533
13. 李静, 张瀚能, 赵翀, 张金羽, 张琪, 张靖莹, 刘茂柯, 陈强, 赵珂. 高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析[J]. 应用与环境生物学报, 2016, 22 (4): 689-696 [Li J, Zhang HN, Zhao C, Zhang JY, Zhang Q, Zhang JY, Liu MK, Chen Q, Zhao K. Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system [J]. Chin J Appl Environ Biol, 2016, 22 (4): 689-696]
14. Gordon SA, Weber RP. Colorimetric estimation of Indoleacetic acid [J]. Plant Physiol, 1951, 26 (1): 192
15. Shin SH, Lim Y, Lee SE, Yang NW, Rhee JH. CAS agar diffusion assay for the measurement of siderophores in biological fluids [J]. J Microbiol Meth, 2001, 44 (1): 89
16. Ribeiro CM, Cardoso EJ. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia) [J]. Microboil Res, 2012, 167 (2): 69-78
17. 肖湘, 周樱 王风平. 高效几丁质降解菌CB101的分离、鉴定及其几丁质酶系的研究[J]. 海洋学报, 2003, 25 (1): 138-142 [Xiao X, Zhou Y, Wang FP. Isolation and identification of a high-efficient chitin-degrading marine bacterium CB1O1 and studies on its chitinases system [J]. Acta Ocean Sin, 2003, 25 (1): 138-142]
18. 王浩, 姜妍, 刘伟, 李远明, 于佳, 王绍东. 大豆根际高效溶磷菌株的分离及溶磷能力分析[J]. 大豆科学, 2014, 33 (3): 404-407 [Wang H, Jiang Y, Liu W, Li YM, Yu J, Wang SD. Isolation and analysis on ability of phosphate dissolving bacteria in rhizosphere of soybean [J]. Soyb Sci, 2014, 33 (3): 404-407]
19. 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 [Bao SD. Soil and agricultural chemistry analysis [J]. Beijing: China Agriculture Publishing House, 2000]
20. 杨林丽. 纤维素降解菌筛选及混合菌种纤维素降解能力测定[D]. 西安: 西北农林科技大学, 2013 [Yang LL. Screening of cellulose-decomposing bacteria and measuring activity of cmcase of the mixed bacteria [D]. Xi’an: Northwest A&F University, 2013]
21. 邓振山, 党军龙, 张海州, 李军, 韦革宏. 植物根际促生菌的筛选及其对玉米的促生效应[J]. 微生物学通报, 2012, 39 (7): 980-988 [Deng ZS, Dang JL, Zhang HZ, Li J, Wei GH. Screening of plant growth-promoting rhizobacteria and their promoting effects on maize [J]. Microbiology, 2012, 39 (7): 980-988]
22. 孙三杰, 李建明, 宗建伟, 姚勇哲, 陈凯利. 亚低温与干旱胁迫对番茄幼苗根系形态及叶片结构的影响[J]. 应用生态学报, 2012, 23 (11): 3027-3032 [Sun SJ, Li JM, Zong JW, Yao YZ, Chen KL. Effects of sub-low temperature and drought stress on root morphology and leaf structure of tomato seedlings [J]. Chin J Appl Ecol, 2012, 23 (11): 3027-3032]
23. 刘世全, 曹红霞, 张建青, 胡笑涛. 不同水氮供应对小南瓜根系生长、产量和水氮利用效率的影响[J]. 中国农业科学, 2014, 47 (7): 1362-1371 [Liu SQ, Cao HX, Zhang JQ, Hu XT. Effects of different water and nitrogen supplies on root growth, yield and water and nitrogen use efficiency of small pumpkin [J]. Sci Agric Sin, 2014, 47 (7): 1362-1371]
24. 陈强, 陈文新, 张小平, 李登煜, Lindstrom K. 四川省部分豆科植物根瘤菌的遗传多样性[J]. 应用与环境生物学报, 2008, 14 (1): 83-89 [Chen Q, Chen WX, Zhang XP, Li DY, Lindstrom K. Genetic diversity of rhizobia isolated from some legumes in Sichuan, China [J]. Chin J Appl Environ Biol, 2008, 14 (1): 83-89]
25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870
26. 吕睿, 贾凤安, 刘晨, 胡婷, 甄丽莎. 无机磷降解菌株的分离、鉴定及解磷能力[J]. 江苏农业科学, 2017, 45 (20): 295-298 [Lü R, Jia FA, Liu C, Hu T, Zhen LS. Isolation, identification and phosphorus-solubilizing abilities of inorganic phosphorus-solubilizing strains [J]. Jiangsu Agric Sci, 2017, 45 (20): 295-298]
27. 白文娟, 胡蓉蓉, 章家恩, 冯丽芳, 徐华勤. 玉米根际溶磷细菌的分离、筛选及溶磷能力研究[J]. 华南农业大学学报, 2013, 34 (2): 167-176 [Bai WJ, Hu RR, Zhang JE, Feng LF, Xu HQ. A Study on the isolation, screening and phosphate solubilizing capacity of phosphate solubilizing bacteria in the rhizosphere of corn [J]. J S Chin Agric Univ, 2013, 34 (2): 167-176]
28. 马文文, 姚拓, 蒲小鹏, 卢虎, 张玉霞, 王国基. 东祁连山7种禾草根际溶磷菌筛选及其溶磷特性[J]. 草业科学, 2015, 32 (4): 515-523 [Ma WW, Yao T, Pu XP, Lu H, Zhang YX, Wang GJ. Screening and characteristics of phosphate-solubilizing bacteria in rhizosphere of 7 grasses on eastern Qilian Mountains [J]. Prat Sci, 2015, 32 (4): 515-523]
29. Martinez-Toledo MV, Rubia TDL, Moreno J, Gonzalez-Lopez J. Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum[J]. Plant Soil, 1988, 110 (1): 149-152
30. 张蕾, 徐慧敏, 朱宝利. 根际微生物与植物再植病的发生发展关系[J]. 微生物学报, 2016, 56 (8): 1234-1241 [Zhang L, Xu HM, Zhu BL. Association of rhizosphere soil microbiome with the occurrence and development of replant disease-a review [J]. Acta Microbiol Sin, 2016, 56 (8): 1234-1241]
31. Whitelaw MA, Harden TJ, Helyar KR. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem[J]. Soil Biol Biochem, 2013, 31(5): 655-665
32. 舒健虹, 王普昶, 李显刚, 王小利, 李小冬. 无机磷溶解菌的分离筛选及其对扁穗雀麦生长的影响[J]. 草业学报, 2017, 26 (5): 173-180 [Shu JH, Wang PC, Li XG, Wang XL, Li XD. Isolation and screening of inorganic phosphate-solubilizing bacteria and their effect on the growth of Bromus cartharticus [J]. Acta Pratacuit Sin, 2017, 26 (5): 173-180]
33. Panhwar QA, Radziah O, Rahman AZ, Sariah M, Razi IM, and Naher UA. Contribution of phosphate-solubilizing bacteria in phosphorus bioavailability and growth enhancement of aerobic rice [J]. Span J Agr Res, 2011, 9 (3): 810-820
34. 田婧, 李邵, 马宁, 连青龙, 鲁少尉, 鲍顺淑. 植物根际促生菌作用机理研究进展[J]. 安徽农业科学, 2016, 44 (10): 1-2 [Tian J, Li S, Ma N, Lian QL, Lu SW, Bao SS. Research progress of the action mechanism of plant growth-promoting rhinoacteria [J]. J Anhui Agric Sci, 2016, 44 (10): 1-2]
35. 梅新兰, 闪安琪, 蒋益, 韦中, 王誉瑶, 王世梅, 沈其荣, 徐阳春, 刘建. 适应玉米的溶磷细菌筛选及其对玉米生长的影响[J]. 土壤学报, 2016, 53 (2): 502-509 [Mei XL, Shan AQ, Jiang Y, Wei Z, Wang YY, Wang SM, Shen QR, Xu YC, Liu J. Screening of Phosphate-solubilizing bacteria adaptable to corn and effects of the bacteria on the growth of corn [J]. Acta Pedol Sin, 2016, 53 (2): 502-509]
36. Karlidag H, Esitken A, Turan M, Sahin F. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple [J]. Sci Horticult, 2007, 114 (1): 16-20
37. Pereira SIA, Castro PML. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils [J]. Ecol Eng, 2014, 73: 526-535
38. 荣良燕, 柴强, 姚拓, 张榕, 冯今, 杨浩, 曹蕾, 朱倩. 复合微生物接种剂替代部分化肥对豌豆间作玉米的促生效应[J]. 草业学报, 2015, 24 (2): 22-30 [Rong LY, Chai Q, Yao T, Zhang R, Ma J, Yang H, Cao L, Zhu Q. Partial replacement of chemical fertilizer by compound microbial inoculant and potential for promoting growth of intercropped Zea mays and Pisum sativum [J]. Acta Pratacult Sin, 2015, 24 (2): 22-30]
39. Yu X, Liu X, Zhu TH, Liu GH, Mao C. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization [J]. Biol Fertil Soils, 2011, 47 (4): 437-446
40. 陈志谊, 刘永峰, 刘邮洲, 张荣胜. 植物病害生防芽孢杆菌研究进展[J]. 江苏农业学报, 2012, 28 (5): 999-1006 [Chen ZY, Liu YF, Liu YZ, Zhang RS. Research progress in biocontrol of Bacillus spp. against plant diseases [J]. Jiangsu J Agric Sci, 2012, 28 (5): 999-1006]
41. Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea [J]. Braz J Microbiol, 2016, 47 (1): 85-95
42. 石皓文, 李永斌, 李朋飞, 王志敏, 陈三凤. 田间接种固氮类芽孢杆菌对小麦的增产效应[J]. 中国农业大学学报, 2016, 21 (6): 52-55 [Shi HW, Li YB, Li PF, Wang ZM, Chen SF. Effect of nitrogen-fixing Paenibacillus spp. on wheat yield[J]. J China Agric Univ, 2016, 21 (6): 52-55]
43. 陈倩. 根际细菌的固氮、抗病与促生潜能研究[D]. 北京: 中国农业科学院, 2011 [Chen Q. Study on nitrogen fixation, disease, resistance and plant growth promotion of bacteria from rhizosphere [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011]
44.

相似文献/References:

[1]耿瑞双,缪树华,何立明.抗赖氨酸加苏氨酸的玉米种子蛋白突变体[J].应用与环境生物学报,1995,1(01):1.
 Geng Ruishuang,Miao Shuhua,He Liming.MAIZE SEED PROTEIN MUTANTS RESISTANT TO LYSINE PLUS THREONINE[J].Chinese Journal of Applied & Environmental Biology,1995,1(02):1.
[2]宋松泉,简伟军,傅家瑞.Cd2+对玉米种子活力的影响及Ca2+的拮抗作用[J].应用与环境生物学报,1997,3(01):1.
 Song Songquan,Jian Weijun,Fu Jiarui.EFFECT OF Cd2+ ON SEED VIGOR OF ZEA MAYS L. AND ANTAGONISM OF Ca2+ TO Cd2+[J].Chinese Journal of Applied & Environmental Biology,1997,3(02):1.
[3]章爱群,贺立源,赵会娥,等.磷铝协同作用对玉米苗期生物学性状和营养学特性的影响[J].应用与环境生物学报,2009,15(01):48.[doi:10.3724/SP.J.1145.2009.00048]
 ZHANG Aiqun,HE Liyuan,ZHAO Huie,et al.Effects of Phosphorus Deficiency and Al toxicity on Biological and Nutrient Characteristics of Maize Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):48.[doi:10.3724/SP.J.1145.2009.00048]
[4]王琦琳,牛向丽,刘永胜.玉米两个功能未知转录因子基因的转录后加工[J].应用与环境生物学报,2009,15(04):483.[doi:10.3724/SP.J.1145.2009.00483]
 WANG Qilin,NIU Xiangli,LIU Yongsheng.Post-transcriptional Processing of Two Functions of Unknown Transcription Factor Genes in Zea mays[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):483.[doi:10.3724/SP.J.1145.2009.00483]
[5]盛江梅,吴小芹,侯亮亮,等.一株黑松-美味牛肝菌菌根辅助细菌的筛选及鉴定[J].应用与环境生物学报,2010,16(05):701.[doi:10.3724/SP.J.1145.2010.00701]
 SHENG Jiangmei,WU Xiaoqin,HOU Liangliang,et al.Isolation and Identification of a MHB Strain from the Rhizosphere Soil of Pinus thunbergi Inoculated with Boletus edulis[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):701.[doi:10.3724/SP.J.1145.2010.00701]
[6]刘方春,邢尚军,马海林,等.PGPR生物肥对甜樱桃(Cerasus pseudocerasus)根际土壤生物学特征的影响[J].应用与环境生物学报,2012,18(05):722.[doi:10.3724/SP.J.1145.2012.00722]
 LIU Fangchun,XING Shangjun,MA Hailin,et al.Effect of PGPR Fertilizer on Biological Characteristics in Cerasus pseudocerasus Rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):722.[doi:10.3724/SP.J.1145.2012.00722]
[7]张艺伟,狄晓艳,武冬梅,等.山西工矿区土壤SO2-PAHs复合污染对玉米种子萌发和幼苗生长的影响[J].应用与环境生物学报,2013,19(01):134.[doi:10.3724/SP.J.1145.2013.00134]
 ZHANG Yiwei,DI Xiaoyan,WU Dongmei,et al.Effects of Combined Pollution of SO2 and PAHs on Seed Germination and Growth of Maize in Shanxi Industrial and Mining Area[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):134.[doi:10.3724/SP.J.1145.2013.00134]
[8]马海林,邢尚军,刘方春,等.冬枣(Ziziphus jujube Mill.)根际3株促生细菌的筛选与鉴定[J].应用与环境生物学报,2013,19(04):650.[doi:10.3724/SP.J.1145.2013.00650]
 MA Hailin,XING Shangjun,LIU Fangchun,et al.Screening and Identification of Three Plant Growth-promoting Rhizobacteria from Winter Jujube (Ziziphus jujube Mill.) Rhizosphere[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):650.[doi:10.3724/SP.J.1145.2013.00650]
[9]周伦理,解光宁,张振葆,等.两个不同耐铝玉米自交系根系对铝毒胁迫的响应[J].应用与环境生物学报,2014,20(04):669.[doi:10.3724/SP.J.1145.2014.04013]
 ZHOU Lunli,XIE Guangning,ZHANG Zhenbao,et al.Responses of two maize inbred lines of different aluminium tolerance to Al-induced oxidative stress[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):669.[doi:10.3724/SP.J.1145.2014.04013]
[10]杨珊珊,王茜,胡红玲,等.银木凋落叶分解对玉米生长的影响及施肥的缓解作用[J].应用与环境生物学报,2015,21(04):770.[doi:10.3724/SP.J.1145.2015.04033]
 YANG Shanshan,WANG Qian,HU Hongling,et al.Allelopathy of Cinnamomum septentrionale leaf litter on maize growth and relieving effect of fertilization[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):770.[doi:10.3724/SP.J.1145.2015.04033]
[11]李善家,王军强,施志国,等.不同基肥处理对玉米土壤酶活性和球囊霉素相关土壤蛋白的影响[J].应用与环境生物学报,2017,23(2):357.[doi:10.3724/SP.J.1145.2016.04045]
 LI Shanjia,WANG Junqiang,et al.Effect of different base fertilizer treatments on maize soil enzyme activity and glomalin-related protein[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):357.[doi:10.3724/SP.J.1145.2016.04045]

更新日期/Last Update: 2019-04-25