|本期目录/Table of Contents|

[1]彭司华,孙丹,袁文亮,等.通过宏基因组学发现生物催化剂[J].应用与环境生物学报,2019,25(02):463-472.[doi:10.19675/j.cnki.1006-687x.2018.05003]
 PENG Sihua,,et al.Discovering biocatalysts through metagenomics[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):463-472.[doi:10.19675/j.cnki.1006-687x.2018.05003]
点击复制

通过宏基因组学发现生物催化剂()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
463-472
栏目:
综述
出版日期:
2019-04-25

文章信息/Info

Title:
Discovering biocatalysts through metagenomics
作者:
彭司华孙丹袁文亮卫偲
1上海海洋大学水产与生命学院发育生物学系 上海 201306 2水产种质资源发掘与利用教育部重点实验室(上海海洋大学) 上海 201306 3农业部国家水生动物病原库(上海海洋大学) 上海 201306 4科学技术部海洋生物科学国际联合研究中心(上海海洋大学) 上海 201306 5上海理工大学光电信息与计算机工程学院 上海 200093
Author(s):
PENG Sihua1 2 3 4** SUN Dan1 2 3 4 YUAN Wenliang5 & WEI Cai1 2 3 4
1 Department of Developmental Biology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China 2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China 3 National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306,China 4 International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China 5 School of Optical-electric and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093?, China
关键词:
宏基因组学生物催化剂微生物二代测序三代测序
Keywords:
metagenomics biocatalyst enzyme microorganism next generation sequencing third generation sequencing
分类号:
Q939.97 : Q78
DOI:
10.19675/j.cnki.1006-687x.2018.05003
摘要:
现在大多数化学合成使用对环境有害的有机溶剂. 如果用酶作为生物催化剂,则可在化学合成反应中少使用或不使用有机溶剂,所以使用酶作为催化剂更环保. 随着宏基因组学的发展,以及二代测序成本的持续大幅度下降,基于宏基因组学获得生物催化剂已经成为最重要的方法. 本文综述基于宏基因组学发现生物催化剂的各种方法,对目前世界上采用的各种筛选方法进行归纳,共总结出两大类方法:一是基于宏基因组文库的筛选方法,另一种是基于序列的遗传筛选方法. 进一步对这两类方法细分为具体的7种筛选方法,并对各种方法的优缺点逐一进行回顾和评述. 同时,对各种基于宏基因组学筛选生物催化剂的方法得到的结果进行统计分析,指出表型选择法筛选是采用最多的方法,有很大的实用价值. 认为直接二代测序进行生物信息学筛选的方法也是有潜力的一种筛选方法,三代测序技术将在基于宏基因组学的生物催化剂筛选中发挥重要作用. (图2 表8 参92)
Abstract:
The majority of chemical synthesis uses organic solvents that are harmful to the environment. If an enzyme is used as the biocatalyst, the organic solvent has limited or no use in the chemical synthesis reaction; thus, the use of an enzyme as a catalyst is more environment-friendly. With the development of metagenomics and the decrease in the cost of next generation sequencing, biocatalysts based on metagenomics have become the most important products in chemical synthesis reactions. This study reviewed the various methods for discovering biocatalysts based on metagenomics and summarized the various screening methods currently used worldwide. Two major methods were discovered: one is a screening method based on metagenomic libraries and the other is a sequence-based genetic screening method. These two methods were subdivided into seven specific screening methods. The advantages and disadvantages of the various methods were reviewed, and the various methods based on metagenomics for screening biocatalysts were statistically analyzed. The phenotypic screening method was the most commonly used method and has great practical value. The direct next generation sequencing method for bioinformatics screening is also a potential screening method. Finally, the prospects for the future development of biocatalyst screening based on metagenomics were forecasted, with third generation sequencing technology expected to play an important role in the screening of biocatalysts based on metagenomics.

参考文献/References:

1 Alcalde M, Ferrer M, Plou FJ, Ballesteros A. Environmental biocatalysis: from remediation with enzymes to novel green processes [J]. Trends Biotechnol, 2006, 24 (6): 281-287
2 Fernandez-Arrojo L, Guazzaroni M-E, Lopez-Cortes N, Beloqui A, Ferrer M. Metagenomic era for biocatalyst identification [J]. Curr Opin Biotechnol, 2010, 21 (6): 725-733
3 Fouhy F, Stanton C, Cotter PD, Hill C, Walsh F. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance [J]. Frontiers Microbiol, 2015, 6: 172
4 Mirete S, Morgante V, Gonzalez-Pastor JE. Functional metagenomics of extreme environments [J]. Curr Opin Biotechnol, 2016, 38: 143-149
5 Ufarte L, Potocki-Veronese G, Laville E. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology [J]. Frontiers Microbiol, 2015, 6: 563
6 dos Santos DFK, Istvan P, Quirino BF, Kruger RH. Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments [J]. Microb Ecol, 2017, 73 (2): 479-491
7 Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to investigate human and environmental resistomes [J]. J Antimicrob Chemother, 2017, 72 (10): 2690-2703
8 Roossinck MJ, Martin DP, Roumagnac P. Plant virus metagenomics: advances in virus discovery [J]. Phytopathology, 2015, 105 (6): 716-727
9 Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis [J]. Nat Biotechnol, 2017, 35 (9): 833-844
10 Bender JM, Bard JD. Metagenomics in pediatrics: using a shotgun approach to diagnose infections [J]. Curr Opin Pediatr, 2018, 30 (1): 125-130
11 De Filippis F, Parente E, Ercolini D. Metagenomics insights into food fermentations [J]. Microb Biotechnol, 2017, 10 (1): 91-102
12 Batista-Garcia RA, del Rayo Sanchez-Carbente M, Talia P, Jackson SA, O’Leary ND, Dobson ADW, Luis Folch-Mallol J. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects [J]. Biofuels Bioproducts Biorefining-Biofpr, 2016, 10 (6): 864-882
13 Coughlan LM, Cotter PD, Hill C, Alvarez-Ordonez A. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries [J]. Front Microbiol, 2015, 6: 672
14 Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes [J]. FEMS Microbiol Lett, 2017, 364 (21): fnx211
15 Ferrer M, Martinez-Martinez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends [J]. Microb Biotechnol, 2016, 9 (1): 22-34
16 Popovic A, Hai T, Tchigvintsev A, Hajighasemi M, Nocek B, Khusnutdinova AN, Brown G, Glinos J, Flick R, Skarina T et al. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families [J]. Sci Rep, 2017, 7: 44103
17 Sanchez-Reyez A, Alberto Batista-Garcia R, Valdes-Garcia G, Ortiz E, Perezgasga L, Zarate-Romero A, Pastor N, Luis Folch-Mallol J. A family 13 thioesterase isolated from an activated sludge metagenome: Insights into aromatic compounds metabolism [J]. Proteins-Struct Funct Bioinform 2017, 85 (7): 1222-1237
18 Zhang Y, Hao J, Zhang YQ, Chen XL, Xie BB, Shi M, Zhou BC, Zhang YZ, Li PY. Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China Sea [J]. Front Microbiol, 2017, 8: 441
19 Cheng J, Huang S, Jiang H, Zhang Y, Li L, Wang J, Fan C. Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen [J]. World J Microbiol Biotechnol, 2016, 32 (1): 12
20 Garg R, Srivastava R, Brahma V, Verma L, Karthikeyan S, Sahni G. Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome [J]. Sci Rep, 2016, 6: 39634
21 Meneses C, Silva B, Medeiros B, Serrato R, Johnston-Monje D. A metagenomic advance for the cloning and characterization of a cellulase from red rice crop residues [J]. Molecules, 2016, 21 (7): 831
22 Zhou Y, Wang X, Wei W, Xu J, Wang W, Xie Z, Zhang Z, Jiang H, Wang Q, Wei C. A novel efficient beta-glucanase from a paddy soil microbial metagenome with versatile activities [J]. Biotechnol Biofuels, 2016, 9: 36
23 Gao G, Wang A, Gong BL, Li QQ, Liu YH, He ZM, Li G. A novel metagenome-derived gene cluster from termite hindgut. Encoding phosphotransferase system components and high glucose tolerant glucosidase [J]. Enzyme Microb Technol, 2016, 84: 24-31
24 Ramirez-Escudero M, del Pozo MV, Marin-Navarro J, Gonzalez B, Golyshin PN, Polaina J, Ferrer M, Sanz-Aparicio J. Structural and functional characterization of a ruminal -glycosidase defines a novel subfamily of glycoside hydrolase family 3 with permuted domain topology [J]. J Biol Chem, 2016, 291 (46): 24200-24214
25 Jordan DB, Braker JD, Wagschal K, Stoller JR, Lee CC. Isolation and divalent-metal activation of a beta-xylosidase, RUM630-BX [J]. Enzyme Microb Technol, 2016, 82: 158-163
26 Matsuzawa T, Kimura N, Suenaga H, Yaoi K. Screening, identification, and characterization of alpha-xylosidase from a soil metagenome [J]. J Biosci Bioeng, 2016, 122 (4): 393-399
27 Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, Mikkelsen JD. Novel alpha-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides [J]. PLoS ONE, 2016, 11 (1): e0147438
28 Maruthamuthu M, Jimenez DJ, Stevens P, van Elsas JD. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes [J]. BMC Genomics, 2016, 17: 86
29 Gao W, Wu K, Chen L, Fan H, Zhao Z, Gao B, Wang H, Wei D. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters [J]. Microbial Cell Factories, 2016, 15: 41
30 Jeon JH, Lee HS, Lee JH, Koo B-S, Lee C-M, Lee SH, Kang SG, Lee J-H. A novel family VIII carboxylesterase hydrolysing third- and fourth-generation cephalosporins [J]. Springerplus, 2016, 5: 525
31 De Santi C, Altermark B, Pierechod MM, Ambrosino L, de Pascale D, Willassen N-P. Characterization of a cold-active and salt tolerant esterase identified by functional screening of Arctic metagenomic libraries [J]. BMC Biochem, 2016, 17: 1
32 Lee HW, Jung WK, Kim YH, Ryu BH, Kim TD, Kim J, Kim H. Characterization of a novel alkaline family VIII esterase with S-enantiomer preference from a compost metagenomic library [J]. J Microbiol Biotechnol, 2016, 26 (2): 315-325
33 Huang J, Huo Y-Y, Ji R, Kuang S, Ji C, Xu X-W, Li J. Structural insights of a hormone sensitive lipase homologue Est22 [J]. Sci Rep, 2016, 6: 28550
34 Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, Nikolaev EN, Rivkina EM. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library [J]. FEMS Microbiol Ecol, 2016, 92 (5): fiw046
35 Khan M, Kumar A. Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome [J]. J Mol Graph Model, 2016, 70: 212-225
36 Maester TC, Pereira MR, Machado Sierra EG, Balan A, de Macedo Lemos EG. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications [J]. Appl Microbiol Biotechnol, 2016, 100 (13): 5815-5827
37 De Santi C, Willassen NP, Williamson A. Biochemical characterization of a family 15 carbohydrate esterase from a bacterial marine arctic metagenome [J]. PLoS ONE, 2016, 11 (7): e0159345
38 Kim NH, Park J-H, Chung E, So H-A, Lee MH, Kim J-C, Hwang EC, Lee S-W. Characterization of a soil metagenome-derived gene encoding wax ester synthase [J]. J Microbiol Biotechnol, 2016, 26 (2): 248-254
39 Kimura N, Kamagata Y. A thermostable bilirubin-oxidizing enzyme from activated sludge isolated by a metagenomic approach [J]. Microbes Environ, 2016, 31 (4): 435-441
40 Devi SG, Fathima AA, Sanitha M, Iyappan S, Curtis WR, Ramya M. Expression and characterization of alkaline protease from the metagenomic library of tannery activated sludge [J]. J Biosci Bioeng, 2016, 122 (6): 694-700
41 Apolinar-Hernandez MM, Pena-Ramirez YJ, Perez-Rueda E, Canto-Canche BB, Santos-Briones CDl, O’Connor-Sanchez A. Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatan underground water [J]. Gene, 2016, 593 (1): 154-161
42 Mai Z, Su H, Zhang S. Isolation and characterization of a glycosyl hydrolase family 16 beta-agarase from a mangrove soil metagenomic library [J]. Int J Mol Sci, 2016, 17 (8): 1360
43 Mueller CA, Perz V, Christoph PA, Quartinello F, Guebitz GM, Berg G. Discovery of polyesterases from moss-associated microorganisms [J]. Appl Environ Microbiol, 2017, 83 (4): e02641-02616
44 Pimentel AC, Ematsu GCG, Liberato MV, Paixao DAA, Franco Cairo JPL, Mandelli F, Tramontina R, Gandin CA, de Oliveira Neto M, Squina FM. Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture [J]. Int J Biol Macromol, 2017, 99: 384-393
45 Matsuzawa T, Yaoi K. Screening, identification, and characterization of a novel saccharide-stimulated beta-glycosidase from a soil metagenomic library [J]. Appl Microbiol Biotechnol, 2017, 101 (2): 633-646
46 Song Y-H, Lee K-T, Baek J-Y, Kim M-J, Kwon M-R, Kim Y-J, Park M-R, Ko H, Lee J-S, Kim K-S. Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library [J]. Folia Microbiol (Praha), 2017, 62 (3): 175-181
47 Rashamuse K, Tendai WS, Mathiba K, Ngcobo T, Mtimka S, Brady D. Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular beta-1,4-xylanase (GH11) [J]. Biotechnol Appl Biochem, 2017, 64 (2): 174-186
48 Thimoteo SS, Glogauer A, Faoro H, de Souza EM, Huergo LF, Moerschbacher BM, Pedrosa FO. A broad pH range and processive chitinase from a metagenome library [J]. Braz J Med Biol Res, 2017, 50 (1): e5658
49 Berini F, Presti I, Beltrametti F, Pedroli M, Varum KM, Pollegioni L, Sjoling S, Marinelli F. Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome [J]. Microbial Cell Factories, 2017, 16: 16
50 Dukunde A, Schneider D, Lu M, Brady S, Daniel R. A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum [J]. Biotechnol Lett, 2017, 39 (4): 577-587
51 Sahoo RK, Kumar M, Sukla LB, Subudhi E: Bioprospecting hot spring metagenome. lipase for the production of biodiesel [J]. Environ Sci Pollution Res, 2017, 24 (4): 3802-3809
52 Yan W, Wang L, Zhu Y, Dong Z, Bai L. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library [J]. Biotechnol Rep (Amst), 2017, 14: 27-33
53 Tan H, Mooij MJ, Barret M, Hegarty PM, Harington C, Dobson AD, O’Gara F. Identification of novel phytase genes from an agricultural soil-derived metagenome [J]. J Microbiol Biotechnol, 2014, 24 (1): 113-118
54 Zhang Q, Xu H, Zhao J, Zeng R. Expression and characterization of a thermostable penicillin G acylase from an environmental metagenomic library [J]. Biotechnol Lett, 2014, 36 (3): 617-625
55 Knupp dos Santos DF, Istvan P, Noronha EF, Quirino BF, Krueger RH. New dioxygenase from metagenomic library from Brazilian soil: insights into antibiotic resistance and bioremediation [J]. Biotechnol Lett, 2015, 37 (9): 1809-1817
56 Nagayama H, Sugawara T, Endo R, Ono A, Kato H, Ohtsubo Y, Nagata Y, Tsuda M. Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts [J]. Appl Microbiol Biotechnol, 2015, 99 (10): 4453-4470
57 Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC. Functional metagenomics reveals novel beta-galactosidases not predictable from gene sequences [J]. PLoS ONE, 2017, 12 (3): e0172545
58 Silva-Portela RCB, Carvalho FM, Pereira CPM, de Souza-Pinto NC, Modesti M, Fuchs RP, Agnez-Lima LF. ExoMeg1: a new exonuclease from metagenomic library [J]. Sci Rep, 2016, 6: 19712
59 Uchiyama T, Abe T, Ikemura T, Watanabe K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes [J]. Nat Biotechnol, 2005, 23 (1): 88-93
60 王魁,汪思迪,黄睿,刘玉焕: 宏基因组学挖掘新型生物催化剂的研究进展 [J]. 生物工程学报, 2012, 28 (4): 420?431 [Wang K, Wang SD, Huang R, Liu YH. Research progress in mining new biocatalysts using metagenomics [J]. Chin J Bioeng, 2012, 28 (4): 420?431]
61 de Lorenzo V. Problems with metagenomic screening [J]. Nat Biotechnol, 2005, 23 (9): 1045-1046
62 Yun J, Ryu S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it [J]. Microbial Cell Factories, 2005, 4: 8
63 Uchiyama T, Watanabe K. Substrate-induced gene expression (SIGEX) screening of metagenome libraries [J]. Nat Protocols, 2008, 3 (7): 1202-1212
64 Lee D-H, Choi S-L, Rha E, Kim SJ, Yeom S-J, Moon J-H, Lee S-G. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments [J]. BMC Biotechnol, 2015, 15: 1
65 Pooja S, Pushpanathan M, Jayashree S, Gunasekaran P, Rajendhran J. Identification of periplasmic alpha-amlyase from cow dung metagenome by product induced gene expression profiling (pigex) [J]. Indian J Microbiol, 2015, 55 (1): 57-65
66 Cretoiu MS, Berini F, Kielak AM, Marinelli F, van Elsas JD. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil [J]. Appl Microbiol Biotechnol, 2015, 99 (19): 8199-8215
67 Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome [J]. Appl Microbiol Biotechnol, 2016, 100 (5): 2225-2241
68 Gomes-Pepe ES, Machado Sierra EG, Pereira MR, Luque Castellane TC, de Macedo Lemos EG. Bg10: a novel metagenomics alcohol-tolerant and glucose-stimulated GH1 SS-glucosidase suitable for lactose-free milk preparation [J]. PLoS ONE, 2016, 11 (12): e0167932
69 Liu J, Jia Z, Li S, Li Y, You Q, Zhang C, Zheng X, Xiong G, Zhao J, Qi C et al. Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean [J]. Gene, 2016, 590 (1): 79-84
70 Masuch T, Kusnezowa A, Nilewski S, Bautista JT, Kourist R, Leichert LI. A combined bioinformatics and functional metagenomics approach to discovering lipolytic biocatalysts [J]. Frontiers Microbiol, 2015, 6: 1110
71 Ou Q, Liu Y, Deng J, Chen G, Yang Y, Shen P, Wu B, Jiang C. A novel D-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization [J]. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol, 2015, 107 (6): 1615-1623
72 Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. A novel phytase derived from an acidic peat-soil microbiome showing high stability under acidic plus pepsin conditions [J]. J Mol Microbiol Biotechnol, 2016, 26 (4): 291-301
73 Tan H, Wu X, Xie L, Huang Z, Gan B, Peng W. Cloning, overexpression, and characterization of a metagenome-derived phytase with optimal activity at low pH [J]. J Microbiol Biotechnol, 2015, 25 (6): 930-935
74 Wasaki J, Taguchi H, Senoura T, Akasaka H, Watanabe J, Kawaguchi K, Komata Y, Hanashiro K, Ito S. Identification and distribution of cellobiose 2-epimerase genes by a PCR-based metagenomic approach [J]. Appl Microbiol Biotechnol, 2015, 99 (10): 4287-4295
75 Sun MZ, Zheng HC, Meng LC, Sun JS, Song H, Bao YJ, Pei HS, Yan Z, Zhang XQ, Zhang JS. Direct Cloning, expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob [J]. Biotechnol Lett, 2015, 37 (9): 1877-1886
76 Hua M, Zhao S, Zhang L, Liu D, Xia H, Li F, Chen S. Direct detection, cloning and characterization of a glucoside hydrolase from forest soil [J]. Biotechnol Lett, 2015, 37 (6): 1227-1232
77 Liu Z, Zhao C, Deng Y, Huang Y, Liu B. Characterization of a thermostable recombinant beta-galactosidase from a thermophilic anaerobic bacterial consortium YTY-70 [J]. Biotechnol Biotechnol Equipment, 2015, 29 (3): 547-554
78 Liu Y, Yan Q, Yang S, Jiang Z. Novel protease-resistant exochitinase (Echi47) from pig fecal environment dna with application potentials in the food and feed industries [J]. J Agric Food Chem, 2015, 63 (27): 6262-6270
79 Kumar R, Banoth L, Banerjee UC, Kaur J. Enantiomeric separation of pharmaceutically important drug intermediates using a Metagenomic lipase and optimization of its large scale production [J]. Int J Biol Macromol, 2017, 95: 995-1003
80 Wei Y, Zhou H, Zhang J, Zhang L, Geng A, Liu F, Zhao G, Wang S, Zhou Z, Yan X. Insight into dominant cellulolytic bacteria from two biogas digesters and their glycoside hydrolase genes [J]. PLoS ONE, 2015, 10 (6): e0129921
81 Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402
82 Ferrandi EE, Sayer C, Isupov MN, Annovazzi C, Marchesi C, Iacobone G, Peng X, Bonch-Osmolovskaya E, Wohlgemuth R, Littlechild JA et al. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries [J]. FEBS J, 2015, 282 (15): 2879-2894
83 Stoeveken J, Singh R, Kolkenbrock S, Zakrzewski M, Wibberg D, Eikmeyer FG, Pithier A, Schlueter A, Moerschbacher BM. Successful heterologous expression of a novel chitinase identified by sequence analyses of the metagenome from a chitin-enriched soil sample [J]. J Biotechnol, 2015, 201: 60-68
84 Yang C, Xia Y, Qu H, Li A-D, Liu R, Wang Y, Zhang T. Discovery of new cellulases from the metagenome by a metagenomics-guided strategy [J]. Biotechnol Biofuels, 2016, 9: 138
85 Sonbol SA, Ferreira AJS, Siam R. Red Sea Atlantis II brine pool nitrilase with unique thermostability profile and heavy metal tolerance [J]. BMC Biotechnol, 2016, 16: 14
86 Patel AB, Patel AK, Shah MP, Parikh IK, Joshi CG. Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome [J]. Biotechnol Appl Biochem, 2016, 63 (2): 257-265
87 Mootapally CS, Nathani NM, Patel AK, Jakhesara SJ, Joshi CG. Mining of ruminant microbial phytase (RPHY1) from metagenomic data of Mehsani buffalo breed: identification, gene cloning, and characterization [J]. J Mol Microbiol Biotechnol, 2016, 26 (4): 252-260
88 Faheem M, Martins-de-Sa D, Vidal JFD, Alvares ACM, Brandao-Neto J, Bird LE, Tully MD, von Delft F, Souto BM, Quirino BF. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome [J]. Sci Rep, 2016, 6: 38031
89 Zarafeta D, Moschidi D, Ladoukakis E, Gavrilov S, Chrysina ED, Chatziioannou A, Kublanov I, Skretas G, Kolisis FN. Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases [J]. Sci Rep, 2016, 6: 38886
90 Schroeder C, Janzer V-A, Schirrmacher G, Claren J, Antranikian G. Characterization of two novel heat-active alpha-galactosidases from thermophilic bacteria [J]. Extremophiles, 2017, 21 (1): 85-94
91 Ferrandi EE, Previdi A, Bassanini I, Riva S, Peng X, Monti D. Novel thermostable amine transferases from hot spring metagenomes [J]. Appl Microbiol Biotechnol, 2017, 101 (12): 4963-4979
92 Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B. High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium [J]. Biotechnol Lett, 2017, 39 (1): 123-131

相似文献/References:

[1]陈丹丹,顾胜华,张金娜,等.肠道菌群对免疫系统的影响及其群落分析方法[J].应用与环境生物学报,2013,19(03):542.[doi:10.3724/SP.J.1145.2013.00542]
 CHEN Dandan,GU Shenghua,ZHANG Jinna,et al.Effect of Intestinal Microbes on the Immune System and the Latest Research Methods[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):542.[doi:10.3724/SP.J.1145.2013.00542]
[2]陈剑,李君文,邱志刚,等.CTX-M型产ESBLs耐药基因在城市典型河流中的生态分布[J].应用与环境生物学报,2014,20(01):40.[doi:10.3724/SP.J.1145.2014.00040]
 CHEN Jian,LI Junwen,QIU Zhigang,et al.Ecological distribution of CTX-M extended-spectrum β-lactamase antibiotic resistant gene in typical city rivers of China[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):40.[doi:10.3724/SP.J.1145.2014.00040]
[3]张冬寒,曹明明,李延清,等.基于序列筛选发掘宏基因组文库中的新颖卤化酶基因[J].应用与环境生物学报,2018,24(06):1301.[doi:10.19675/j.cnki.1006-687x.2017.12031]
 ZHANG Donghan,et al..Discovery of novel halogenase genes using sequence-driven metagenomics approach[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1301.[doi:10.19675/j.cnki.1006-687x.2017.12031]

更新日期/Last Update: 2019-04-25