|本期目录/Table of Contents|

[1]张春梅,邹志荣,张志新,等.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响[J].应用与环境生物学报,2009,15(03):301-307.[doi:10.3724/SP.J.1145.2009.00301]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):301-307.[doi:10.3724/SP.J.1145.2009.00301]
点击复制

外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年03期
页码:
301-307
栏目:
研究论文
出版日期:
2009-05-15

文章信息/Info

Title:
Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress
作者:
张春梅邹志荣张志新黄志
1西北农林科技大学园艺学院 杨凌 712100
2河西学院农学系 张掖 734000
Author(s):
ZHANG ChunmeiZOU ZhirongZHANG ZhixinHUANG Zhi
1Department of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
2Department of Agricutural Science, Hexi University, Zhangye 734000, Gansu, China
关键词:
亚精胺番茄干旱胁迫活性氧抗氧化系统
Keywords:
spermidine tomato drought stress reactive oxygen species antioxidative systems
分类号:
Q945.78
DOI:
10.3724/SP.J.1145.2009.00301
文献标志码:
A
摘要:
摘 要 以耐旱性不同的2个品种番茄(‘毛粉802’和‘皇冠’)为试材,采用营养液栽培,研究了聚乙二醇(PEG)模拟的干旱胁迫下喷施外源亚精胺(Spd)对番茄幼苗活性氧(ROS)水平和抗氧化系统的影响. 结果表明,喷施0.1 mmol L-1 Spd降低了7.5% PEG胁迫下2个品种番茄幼苗叶中超氧阴离子(O2-·)产生速率、过氧化氢(H2O2)、丙二醛(MDA)含量的上升,增加了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)以及AsA-GSH循环中抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)的活性,提高了抗氧化物质抗坏血酸(AsA)、还原型谷胱甘肽(GSH)的含量,对单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)活性没有影响. 耐旱性较强的‘毛粉802’幼苗叶中抗氧化酶活性和抗氧化剂升高幅度明显大于耐旱性较弱的‘皇冠’,ROS积累速度和膜脂过氧化程度相对较低,喷施Spd处理对‘皇冠’效果更为明显. 这表明外源Spd通过减少干旱胁迫下番茄幼苗体内ROS的产生,提高植株体内抗氧化系统中抗氧化酶活性、抗氧化剂含量和降低膜脂过氧化水平,起到缓解干旱胁迫对番茄幼苗伤害的作用,增强幼苗对干旱逆境的适应性. 图4 参32
Abstract:
Abstract Two different drought-tolerant tomato cultivars were investigated under drought stress induced by 7.5% polyethylene glycol (PEG6000) in a nutrient solution culture system. The results showed that exogenous spermidine (Spd) (0.1 mmol L-1 ) treatment decreased O2-· production rate, and MDA and H2O2 contents, raised SOD, POD, CAT, APX and GR activities in the seedlings, and had no effect on MDHAR and DHAR activities. Spd treatment of ‘Huangguan’ seedlings with lower drought-resistance was more effective than that of ‘Maofen No. 802’ seedlings with stronger drought-resistance. It indicated that exogenous Spd treatment could to enhance the activities of some antioxidant enzymes and the contents of antioxidant substances, restrain embrane lipid peroxidation, reduce ROS levels and finally enhance the tolerance of tomato seedlings to drought environments. Fig 4, Ref 32

参考文献/References:

1 Bohnert HJ, Jensen RG. Strategies for engineering water stress tolerance in plants. Trends Biotech, 1996, 14: 89~97
2 Du XM (杜秀敏), Yin WX (殷文璇), Zhao YX (赵彦修) , Zhang H (张慧). The production and scavenging of reactive oxygen species in plants. Chin J Biotechnol (生物工程学报), 2001, 17 (2): 121~126
3 Zhao LY (赵丽英), Den GP (邓西平), Shan L (山仑). The response mechanism of active oxygen species removing system to drought stress. Acta Bot Bor-occid Sin (西北植物学报), 2005, 25 (2): 413~418
4 Fu SL (付士磊), Zhou YB (周永斌), He XY (何兴元), Chen W (陈玮). Effects of drought stress on photosynthesis physiology of Populus pseudosimonii. Chin J Appl Ecol (应用生态学报), 2006, 17 (11): 2016~2019
5 Prochazkova D, Sairam RK, Srivastava GC, Singh DV. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci, 2001, 161: 765~771
6 UshimaruT, Kanematsu S, Katayama M, Hideo Tsuji. Antioxidative enzymes in seedlings of Nelumbo nuciferagerminated under water. Physiol Plant, 2001, 112 (1): 39~46
7 Malgorzata G, Waldemar B. Effects of a short-term hypoxic treatment followed by re-aeration on free radicals level and anti-oxidative enzymes in lupine roots. Plant Physiol Biochem, 2004, 42: 233~240
8 Horeman SN, Foyer CH, Asard H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci, 2000, 5: 263
9 Balestrasse KB, Gardey L, Gallego SM, Tomaro ML. Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Plant Physiol, 2001, 28: 497
10 Wang M (王淼), Li QR (李秋荣), Fu SL (付士磊), Dong BL (董百丽). Effects of exogenous nitric oxide on photosynthetic characteristics of poplar leaves under water stress. Chin J Appl Ecol (应用生态学报), 2005, 16 (2): 218~222
11 Kasukabe Y, He L, Nada K, Misawa S, Ihara L, Tachibana S. Over expression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45 (6): 712~722
12 He L, Nada K, Kasukabe Y, Tachibana S. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiol, 2002, 43 (2): 196~206
13 Drolet G, Dumbroff EB, Legg R, Thompson JE. Radical scavenging properties of polyamines. Phytochemistry, 1986, 25 (2): 367~371
14 KelesY, Oncel I. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci, 2002, 163 (4): 783~790
15 Lu SY (卢少云), Chen SP (陈斯平), Chen SM (陈斯曼), Liang X (梁潇), Guo ZF (郭振飞). Responses of proline content and activity of antioxidant enzymes in warm season turf grasses to soil drought stress. Acta Horticult Sin (园艺学报), 2003, 30 (3): 303~306
16 Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004, 161: 1189~1202
17 Chen SF (陈淑芳), Zhu YL (朱月林), Liu YL (刘友良), Li SJ (李式军). Effects of NaCl stress on activities of protective enzymes, contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings. Acta Horticult Sin (园艺学报), 2005, 32 (4): 609~613
18 Jiang MY, Zhang JH. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42 (11): 1265~1273
19 Uchida A, Andre TI, Takashi H. Effects of hydrogen peroxide and nitric oxideon both salt and heat stress tolerance in rice. Plant Sci, 2002, 163: 515~523
20 Ma FW, Cheng LL. The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shade peel. Plant Sci, 2003, 165: 819~827
21 Ma FW, Cheng LL. Exposure of the shaded side of apple fruit to full sun leads to up-regulation of both xanthophyll cycle and the ascorbate-glutathione cycle. Plant Sci, 2004, 166: 1479~1486
22 Guerrier G, Brignolas F, Thierry C, Courtois M, Kahlem G. Organic solutes protect drought-tolerant Populus × euramericana against reactive oxygen species. J Plant Physiol, 2000, 156: 93~99
23 Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid-treated bean plants. Protective role of exogenous polyamines. Plant Sci, 2000, 151: 59~66
24 Duan JJ (段九菊), Guo SR (郭世荣), Kang YY (康云艳). Effects of exogenous spermidine on reactive oxygen species levels and antioxidant enzymes activities of cucumber seedlings under salt stress. Acta Horticult Sin (园艺学报), 2006, 33 (3): 639~634
25 Zhou GX (周国贤), Guo SR (郭世荣),Wang SP (王素平). Effects of exogenous polyamines on photosynthetic characteristics and membrane lipid peroxidation of Cucumis sativus seedlings under hypoxia stress. Chin Bull Bot (植物学通报), 2006, 23 (4): 341~347
26 Aziz A, Larher F. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci, 1995, 112: 178~186
27 Kang YY (康云艳), Guo SR (郭世荣), Duan JJ (段九菊). Influence of hypoxia stress on antioxidative system of roots in two different resistant cucumber (Cucumis sativus L.) cultivars. Acta Phytophysiol Sin (植物生理学报), 2007, 43 (4): 630~634
28 Pinheiro HA, DaMatta FM, Chaves ARM, Elizabeth PBF, Marcelo EL. Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci, 2004, 167: 1307~1314
29 Reddy AR, Chaitanya KV, Jutur PP, Sumithra K. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot, 2004, 52 (1): 33~42
30 Wang HZ (王贺正), Ma J (马均), Li XY (李旭毅), Li Y (李艳), Zhang RP (张荣萍), Wang RQ (汪仁全). Effects of water stress on active oxygen generation and protection system in rice during grain filling stage. Sci Agric Sin (中国农业科学), 2007, 40 (7): 1379~1387
31 Xu YC (徐仰仓), Wang J (王静), Liu H (刘华), Wang GX (王根轩). Promoting effect of exogenous spermine on anti-oxidative enzyme activity in wheat seedlings. Acta Phytophysiol Sin (植物生理学报), 2001, 27 (4): 349~352
32 Liu HP, Yu BJ, Zhang WH. Effect of osmotic stress on the activity of H+ -ATPase and the levels of covalently and nocovalently polyamines in plasma membrane preparation from wheat seedling roots. Plant Sci, 2005, 168 (6): 1599~1607

相似文献/References:

[1]葛体达,黄丹枫** 芦波 唐东梅 宋世威.无机氮和有机氮对水培番茄幼苗碳水化合物积累及氮素吸收的影响*[J].应用与环境生物学报,2008,14(05):604.
[2]刘继恺,高永峰,牛向丽,等.番茄HP1和HP2基因RNA共干涉载体的构建及遗传转化[J].应用与环境生物学报,2009,15(05):591.[doi:10.3724/SP.J.1145.2009.00591]
 LIU Jikai,GAO Yongfeng,NIU Xiangli & LIU Yongsheng.Construction and Transformation of Co-RNAi Vector of Tomato HP1 and HP2 Genes[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):591.[doi:10.3724/SP.J.1145.2009.00591]
[3]崔向超,胡君利,林先贵,等.丛枝菌根真菌与复硝酚钠在番茄育苗中的应用[J].应用与环境生物学报,2012,18(05):843.[doi:10.3724/SP.J.1145.2012.00843]
 CUI Xiangchao,HU Junli,LIN Xiangui,et al.Application of Arbuscular Mycorrhizal Fungi and Compound Sodium Nitrophenolate in Tomato Seedling Growth[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):843.[doi:10.3724/SP.J.1145.2012.00843]
[4]张治国,高永峰,苗敏,等.番茄SlWD1基因的克隆及SlWD1与DDB1的相互作用[J].应用与环境生物学报,2013,19(04):623.[doi:10.3724/SP.J.1145.2013.00623]
 ZHANG Zhiguo,GAO Yongfeng,MIAO Min,et al.Cloning of SlWD1 Gene and Interaction of SlWD1 with DDB1 in Tomato[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):623.[doi:10.3724/SP.J.1145.2013.00623]
[5]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):767.[doi:10.3724/SP.J.1145.2014.01033]
[6]张俊芳,唐晓凤,李欲翔,等.番茄SIZ1-like1基因的克隆与功能[J].应用与环境生物学报,2015,21(03):406.[doi:10.3724/SP.J.1145.2014.12016]
 ZHANG Junfang,TANG Xiaofeng,LI Yuxiang,et al.Cloning and function study of tomato SUMO E3 ligase SIZ1-like1 gene[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):406.[doi:10.3724/SP.J.1145.2014.12016]
[7]杨述章,高兰阳,孙晓春,等.过量表达SlWD6基因增强番茄抗旱和耐盐功能[J].应用与环境生物学报,2015,21(03):413.[doi:10.3724/SP.J.1145.2015.01006]
 YANG Shuzhang,GAO Lanyang,SUN Xiaochun,et al.Over-expressing SlWD6 gene to improve drought and salt tolerance of tomato[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):413.[doi:10.3724/SP.J.1145.2015.01006]
[8]郑娜,柯林峰,杨景艳,等.来源于污染土壤的植物根际细菌对番茄幼苗的促生与盐耐受机制[J].应用与环境生物学报,2018,24(01):47.[doi:10.19675/j.cnki.1006-687x.2017.03031]
 ZHENG Na,KE Linfeng,YANG Jingyan,et al.Growth improvement and salt tolerance mechanisms of tomato seedlings mediated by plant growth-promoting rhizobacteria from contaminated soils[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):47.[doi:10.19675/j.cnki.1006-687x.2017.03031]
[9]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]

备注/Memo

备注/Memo:
*国家“十一五”攻关项目(No. 2007BAD79B04)资助 Supported by the Key Sci & Tech Project of the 11th 5-year Plan of China (No. 2007BAD79B04)
**通讯作者 Corresponding author (E-mail: zouzhirong2005@163.com)
更新日期/Last Update: 2009-07-03