|本期目录/Table of Contents|

[1]郭晓音,严重玲,叶彬彬.镉锌复合胁迫对秋茄幼苗渗透调节物质的影响[J].应用与环境生物学报,2009,15(03):308-312.[doi:10.3724/SP.J.1145.2009.00308]
 GUO Xiaoyin,YAN Chongling,YE Binbin.Effect of Cd–Zn Combined Stress on Contents of Osmotic Substances in Kandelia candel (L.) Druce Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):308-312.[doi:10.3724/SP.J.1145.2009.00308]
点击复制

镉锌复合胁迫对秋茄幼苗渗透调节物质的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年03期
页码:
308-312
栏目:
研究论文
出版日期:
2009-05-15

文章信息/Info

Title:
Effect of Cd–Zn Combined Stress on Contents of Osmotic Substances in Kandelia candel (L.) Druce Seedlings
作者:
郭晓音严重玲叶彬彬
厦门大学生命科学学院 厦门 361005
Author(s):
GUO XiaoyinYAN ChonglingYE Binbin
School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
关键词:
红树秋茄Cd–Zn复合渗透调节物质
Keywords:
mangrove Kandelia candel (L.) Druce Cd–Zn combined stress osmotic adjustment substance
分类号:
Q945.78 : X173
DOI:
10.3724/SP.J.1145.2009.00308
文献标志码:
A
摘要:
摘 要 通过土壤盆栽研究了不同浓度镉(Cd,0、2.5、50 mg kg-1)、锌(Zn,0、100、500 mg kg-1)胁迫下红树植物秋茄的幼苗体内可溶性蛋白、可溶性糖、脯氨酸、有机酸含量的变化. 结果表明,Cd、Zn单一处理下,秋茄体内渗透调节物质含量随重金属浓度升高而增加;Cd、Zn复合处理对秋茄体内可溶性蛋白质含量的复合效应主要表现为协同作用:Cd的加入减弱Zn对秋茄体内可溶性糖含量的刺激作用,低Cd浓度处理下Zn的加入导致可溶性糖含量增加,而高Cd浓度处理下Zn的加入反而降低其含量. 低浓度Zn (或Cd)的加入与土壤中Cd (或Zn)发生拮抗作用,秋茄体内脯氨酸、有机酸含量下降;高浓度Zn (或Cd)的加入与土壤中的Cd (或Zn)发生协同作用,导致渗透调节物质脯氨酸、有机酸的积累量增加,从而缓解高浓度重金属的胁迫. 植物组织或部位不同,Cd与Zn浓度和比例不同,Cd、Zn之间的复合作用存在一定的差异. 表5 参30
Abstract:
Abstract Potted culture experiment was used to investigate the effects of co-contamination of Cd (0, 2.5, 50 mg kg-1) and Zn (0, 100, 500 mg kg-1) on the contents of osmotic adjustment substances in Kandelia candel (L.) Druce seedlings. The interaction effect of Cd–Zn combined stress on the content of soluble protein was mainly mutual. The content of soluble sugar decreased with the addition of Cd when Zn concentration was 100 and 500 mg kg-1. Low Zn concentration increased the soluble sugar content, while high Zn concentration decreased it when Cd (2.5 and 50 mg kg-1) was added. The interaction effect of Cd–Zn combined stress with low concentration on the contents of proline and organic acid was as also mutual, and it showed antagonism at high level of the combined stress. It was suggested that the compound pollution of Cd and Zn was not simply an additive or antagonistic effect. It depended on the Cd and Zn concentrations and their combinations in soil, as well as on the different parts of the plant. Tab 5, Ref 30

参考文献/References:

1 Lin P (林鹏). Mangrove Ecosystem in China. Beijing, China (北京): Science Press, 1997. 297~316
2 Walsh GE. Resistance of red mangrove (Rhizophora mangle L.) seedlings to lead cadmium and mercury. Biotropia, 1979, 11 (1): 22~27
3 Thomas C. Effect of heavy metals zinc and lead on Rhizophora mucronata Lam. and Avicennia alba BL seedlings. In: Soepadmo E, Rao AM, NacIntosh MD eds. Proceedings of Asian Symposium on Mangroves and Environment, Research and Management, 1984. 568~574
4 Ye BB (叶彬彬), Yan CL (严重玲). Effects of Cd on dissolved organic matters in mangrove sediments. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (2): 198~201
5 Miao SY (缪绅裕), Chen GZ (陈桂珠), Huang YS (黄玉山), Tan FY (谭凤仪). Allocation and capacity of zinc in artificial wastewater in simulated wetland system with Kandelia candel. Chin J Appl Environ Biol (应用与环境生物学报), 1999, 5 (1): 8~10
6 MacFarlane GR, Burchett MD. Toxicity growth and accumulation relationships of copper lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar Environ Res, 2002, 54: 65~84
7 Yim MW, TAM NFY. Effects of wastewater-borne heavy metal on mangrove plants and soil microbial activities. Mar Pollu Bul, 1999, 69 (1): 179~186
8 Wang HB (王宏镔), Shu WS (束文圣), Lan CY(蓝崇钰). Ecology for heavy metal pollution: Recent advances and future prospects. Acta Ecol Sin (生态学报), 2005, 25 (3): 596~605
9 Spickett CM, Smirnoff N, Ratdiffe RG. Metabolic responses of maize roots to hyperosmotic ahock. Plant Physiol, 1992, 99: 856~863
10 Peng LX (彭立新), Li DQ (李德全), Shu HR (束怀瑞). Osmotic adjust action of plant under osmotic stress. Tianjin Agric Sci (天津农业科学), 2002, 8 (1): 40~43
11 Wang J (王娟), Li JQ (李健全). The accumulation of plant osmoticum and activated oxygen metabolism under stress. Chin Bull Bot (植物学通报), 2001, 18 (4): 459~465
12 Lu RK (鲁如坤). Analytical Method of Soil Agro-chemistry. Beijing, China (北京): Chinese Agriculture Science and Technology Press, 2000. 12~13, 87~89
13 Li HS (李合生). The principles and techniques of plant physiological biochemical experimental. Beijing, China (北京): Higher Education Press, 2000. 184~185, 258~260
14 Zhang ZL (张志良), Qu WJ (瞿伟菁). Guides to Plant Physiological Experiments. Beijing, China (北京): Higher Education Press, 2003, 80~83, 127~129
15 Wang JY (王晶英), Ao H (敖红), Zhang J (张杰), Qu GQ (曲桂琴). The technology and theory of plant’s physiological and biochemical experiment. Harbin, China (哈尔滨): Northeast Forestry University Press, 2003. 18~20
16 Wu GR (吴桂容), Yan CL (严重玲). Effects of Cd on the growth and osmotic adjustment regulation contents of Aegiceras conrniculatum seedlings. Ecol & Environ (生态环境), 2006, 15 (5): 1003~1008
17 Li ZJ (李兆君), Ma GR (马国瑞), Xu JM (徐建民), He Y (何艳). Physiological and biological mechanism of plant for adapting the stress by cadmium. Chin J Soil Sci (土壤通报), 2004, 35 (2): 234~238
18 Sun SC (孙赛初), Wang HX (王焕校), Li QR (李启任). Preliminary studies on physiological changes and injury mechanism in aquatic vascular plants treated with cadmium. Acta Phytophy Sin (植物生理学报), 1985, 11 (2): 113~121
19 Ding HD (丁海东), Zhu WM (朱为民), Yang SJ (杨少军), Qi NM (齐乃敏), Wan YH (万延慧), Yang XF (杨晓峰). Effects of cadmium and zinc stress on growth and content of proline and glutathione (GSH) in tomato seedlings. Jiangsu J Agric Sci (江苏农业学报), 2005, 21 (3): 191~196
20 He JQ (贺建群), Yang JR (杨居荣), Xu JL (许嘉琳), Chen YF (陈燕丰). Influence of heavy metals and their interactions on heavy metal contents in wheat seedlings. Chin J Ecol (生态学杂志), 1992, 11 (4): 5~10
21 Dudka S. Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants. Water Air & Soil Poll, 1994, 76: 333~341
22 Costa G, Spitz E. Influence of cadmiumon soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci, 1997, 128: 131~140
23 Prasad MNV. Cadmium toxicity and tolerance in vascular plants. Environ & Exp Bot, 1995, 35 (4): 525~545
24 Tang ZC. The accumulation of free proline and its roles in water-stressed sorghum seedings. Acta Phytophy Sin, 1989, 15 (1): 105~110
25 Schat H, Sharma SS, Vooijs R. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Planta, 1997, 101: 477~482
26 Sun RL (孙瑞莲), Zhou QX (周启星). Action and mechanisms of organic acids in higher plants resisting to metals. Chin J Ecol (生态学杂志), 2006, 25 (10): 1275~1279
27 Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat. II. Oxalic acid detoxification aluminum internally. Plant Physiol, 1998, 117: 753~759
28 Sun Q (孙琴), Ni WZ (倪吾钟), Yang XE (杨肖娥). Role of organic acid in detoxification of aluminum in higher plants and its mechanisms. Chin Bul Bot (植物学通报), 2002, 19 (4): 496~503
29 Salt DE, Prince RC, Backer AJM, Raskin I, Pickering IJ. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol, 1999, 33: 713~717
30 Küpper H, Mijovilovich A, Meyer-Klaucke W. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol, 2004, 134: 748~757

相似文献/References:

[1]刘玉,魏洁,黄雄飞,等. 红树植物桐花树、秋茄的有机酸类根系分泌物组成及含量[J].应用与环境生物学报,2014,20(05):850.[doi:10.3724/SP.J.1145.2014.01037]
 LIU Yu,WEI Jie,HUANG Xiongfei,et al.Composition and contents of organic acids in root exudates of mangrove Aegiceras corniculatum and Kandelia candel[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):850.[doi:10.3724/SP.J.1145.2014.01037]

备注/Memo

备注/Memo:
*国家自然科学基金项目(Nos. 40673064, 30710103908),国家基础科学人才培养基金项目(No. J0630649)和福建省高校创新团队培育计划项目资助 Supported by the National Natural Science Foundation of China (Nos. 30710103908, 40673064), the National Foundation for Fostering Talents of Basic Science (J0630649) and the Program for Innovative Research Team in Science and Technology in Universities of Fujian, China
**通讯作者 Corresponding author (E-mail: ycl@xmu.edu.cn)
更新日期/Last Update: 2009-07-03