|本期目录/Table of Contents|

[1]卢倩云,曹宇棽,陈友明,等.镉胁迫下油菜毛状根的生理响应及铁钾含量[J].应用与环境生物学报,2018,24(06):1382-1389.[doi:10.19675/j.cnki.1006-687x.2017.06019]
 LU Qianyun,et al..The physiological response and iron and potassium contents in the hairy roots of Brassica rape L. under cadmium stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1382-1389.[doi:10.19675/j.cnki.1006-687x.2017.06019]
点击复制

镉胁迫下油菜毛状根的生理响应及铁钾含量()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1382-1389
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
The physiological response and iron and potassium contents in the hairy roots of Brassica rape L. under cadmium stress
作者:
卢倩云 曹宇棽 陈友明 晏 琼
北京交通大学理学院生命科学与生物工程研究院 北京 100044
Author(s):
LU Qianyun et al.
College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China
关键词:
油菜毛状根抗氧化酶活性氧化损伤铁钾元素含量
Keywords:
cadmium brassica rape hairy root antioxidant enzyme activity oxidative damage iron and potassium accumulation amount
分类号:
Q945.78
DOI:
10.19675/j.cnki.1006-687x.2017.06019
摘要:
利用液体悬浮培养法研究不同镉(Cd)浓度(0、25、50、100、200和400 μmol/L)胁迫下油菜毛状根的生理响应及对铁钾含量的影响,探究油菜毛状根对镉胁迫的耐受与富集能力. 结果显示:(1)低镉浓度(100 μmol/L以下)对毛状根的生长无显著影响,高镉浓度(100 μmol/L以上)下毛状根的生长则受到明显的抑制,25 μmol/L镉胁迫7 d时毛状根的鲜重最大(4.34 g). (2)油菜毛状根中活性氧(ROS)的含量随着镉浓度的增加而上升,根中主要抗氧化酶(超氧化物酶SOD、过氧化物酶POD、过氧化氢酶CAT)的活性在镉胁迫1 d时,表现出先降低后升高的趋势;镉胁迫7 d时,表现出先升高后降低的趋势. (3)碘化丙啶PI染色与丙二醛MDA分析表明,根细胞的损伤随着镉浓度的增加越发严重. (4)油菜毛状根中的镉含量随着培养基中镉浓度的增加而增加,400 μmol/L、7 d时,达到最大值2.97 mg/g. 毛状根中的铁含量在镉胁迫1 d时随着镉浓度的增加显著上升,最大值达到14.52 mg/g;镉胁迫7 d时没有明显变化. 镉胁迫7 d时毛状根中的钾含量是镉胁迫1 d时(15.73 mg/g)的1.6倍. 本研究结果表明,油菜毛状根对镉胁迫的生理响应变化与镉的作用浓度和时间相关;同时镉胁迫造成了毛状根中铁、钾元素代谢紊乱,但油菜毛状根对镉有较好的富集效果. (图8 参34)
Abstract:
The experiments were conducted to investigate the tolerance and enrichment capabilities by elucidating the physiological response and cadmium impact on iron and potassium accumulation amounts of brassica rape hairy roots under different cadmium concentrations by using liquid suspension culture method. The results showed the following. (1) The growth of hairy roots was not significantly different under low cadmium concentrations (below 100 ?mol/L), whereas it was obviously inhibited under high cadmium concentrations (more than 100 ?mol/L). Further, the maximum fresh weight of brassica rape hairy roots reached 4.34 g under 25 ?mol/L cadmium stress after 7 days. (2) The content of ROS in brassica rape hairy roots increased with increasing concentrations of cadmium; the antioxidant enzyme activities of brassica rape hairy roots (SOD, POD, and CAT) decreased first and then increased with increasing cadmium concentrations under 1-day stress, whereas showed an opposite trend under 7-day stress. (3) PI staining and MDA content indicated that cellular damage was more serious with increasing cadmium concentrations. (4) With the increase of cadmium concentrations, cadmium content of hairy roots increased and reached maximum of 2.97 mg/g under 400 ?mol/L cadmium stress after 7 days. The iron content also increased significantly with the maximal weight of 14.52 mg/g after 1-day cadmium stress, whereas no significant difference was noted under 7-day cadmium stress. The potassium content under 7-day cadmium stress was 1.6 times of that after 1-day stress (15.73 mg/g). The study showed that the physiological response of Brassica rape hairy roots was correlated with the concentration and time of cadmium stress. Moreover, cadmium stress caused metabolic disorders of iron and potassium in the hairy roots, but the hairy roots of Brassica rape had better enrichment effect on cadmium.

参考文献/References:

1. 陈瑛, 李廷强, 杨肖娥. 镉对不同基因型小白菜根系生长特性的影响[J]. 植物营养与肥料学报, 2009, 15 (1): 170-176 [Chen Y, Li TQ, Yang XE. Effects of Cd on growth characteristics of root systems of pakchoi with different genotypes [J]. Plant Nutr Fert Sci, 2009, 15 (1): 170-176]
2. 肖春文, 罗秀云, 田云, 卢向阳. 重金属镉污染生物修复的研究进展[J]. 化学与生物工程, 2013, 8 (2): 23-25 [Xiao CW, Luo XY, Tian Y, Lu XY. Research progress of bioremediation of heavy metal cadmium pollution [J], Chem Bioeng, 2013, 8 (2): 23-25]
3. 苏徳纯, 黄焕忠. 油菜作为超累积植物修复镉污染土壤的潜力[J]. 中国环境科学, 2002 (1): 49-52 [ Sun DC, Huang HZ. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil [J]. Chin J Environ Sci, 2002 (1): 49-52.]
4. 周海霞, 单爱琴, 孙晓菲, 路则耀. 甘蓝和油菜对镉污染土壤的修复研究[J]. 环境科技, 2008, 21 (1): 17-19 [Zhou HX, Shan AQ, Sun XF, Lu ZY. The role of cabbage and rape in remediation of cadmium polluted soil [J]. Environ Sci Tech, 2008, 21 (1): 17-19]
5. Agostini E, Talano MA, González PS, Oller ALW, Medina MI. Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? [J]. Appl Microbiol Biotechnol, 2013, 97 (3): 1017-1030.
6. Doran PM. Application of plant tissue cultures in phytoremediation research: incentives and limitations [J]. Biotechnol Bioeng, 2009, 103 (1): 60
7. 卢倩云, 曹宇棽, 陈友明, 晏琼. 转基因毛状根组织在植物修复研究中的应用进展[J]. 生物过程, 2017, 7 (2): 19-30 [Lu QY, Cao YS, Chen YM, Yan Q. Application progress of hairy roots for phytoremediation. J Plant Physiol, 2017, 7 (2): 19-30]
8. Nedelkoska TV, Doran PM. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens [J]. Biotechnol Bioeng, 2000, 67 (5): 607-615
9. Boominathan R, Doran PM. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens [J]. Biotechnol Bioeng, 2003, 83 (2): 158-167
10. 施和平, 王云灵, 曾宝强, 陈利华. 外源钙对镉胁迫下南美蟛蜞菊毛状根生长、抗氧化酶活性和镉吸收的缓解效应[J]. 生物工程学报, 2012, 28 (6): 747-762 [Shi HP, Wang Y, Tsang PE, Chan LA. Alleviated affect of exogenous CaCl2 on the growth, antioxidative enzyme activities and cadmium absorption efficiency of Wedelia trilobata hairy roots under cadmium stress [J]. Chin J Biotechnol, 2012, 28 (6): 747-762.]
11. Shi HP, Zhu YF, Wang YL, Tsang PK. Effect of cadmium on cytogenetic toxicity in hairy roots of Wedelia trilobata L. and their alleviation by exogenous CaCl2. Environ Sci Poll Res Int, 2014, 21 (2): 1436-1443
12. Alfaro-Salda?a EF, Pérez-Molphe-Balch E, Santos-Díaz MDS. Generation of transformed roots of Scirpus americanus Pers. and study of their potential to remove Pb 2+, and Cr 3+ [J]. PCTOC, 2016: 1-10
13. Downs CG, Christey MC, Davies KM, King GA, Seelye JF, Sinclair BK, StevensonDG. Hairy roots of Brassica napus: II. Glutamine synthetase overexpression altersammonia assimilation and the response to phosphinothricin [J]. Plant Cell Rep, 1994 , 14 (1): 41-46
14. Downs CG, Christey MC, Maddocks D, Seelye JF, Stevenson DG. Hairy roots of Brassica napus: I. Applied glutamine overcomes the effect of phosphinothricin treatment [J]. Plant Cell Rep, 1994, 14 (1): 37-40
15. 刘静轶. 发根农杆菌介导IRT1基因转化镉超富集植物油菜的研究[D]. 北京: 北京交通大学, 2014 [Liu JY. Research on agrobacterium rhizogenes-mediated IRT1 gene transformation in Cd hyperaccumulator Brassica campestris L. [D]. Beijing: Beijing Jiaotong University, 2014]
16. 俞萍, 高凡, 刘杰, 梁琼, 韩莹琰, 王敬贤, 贾月慧. 镉对植物生长的影响和植物耐镉机制研究进展[J]. 中国农学通报, 2017 (11): 89-95 [Yu P, Gao F, Liu J, Liang Q, Han YY, Wang JX, Jiao YH. Effect of Cd on plant growth and its tolerance mechanism [J]. Chin Agric Sci Bull, 2017 (11): 89-95]
17. 李璇, 岳红, 王升, 黄璐琦, 马炯, 郭兰萍. 影响植物抗氧化酶活性的因素及其研究热点和现状[J]. 中国中药杂志, 2013, 38 (7): 973-978 [ Li X, Yue H, Wang SH, Huang LQ, Ma J, Guo LP. Research of different effects on activity of plant antioxidante enzymes [J]. China J Chin Mater Med, 2013, 38 (7): 973-987]
18. Verbruggen N, Hermans C, Schat H. Mechanisms to cope with arsenic or cadmium excess in plants [J]. Curr Opin Plant Biol, 2009, 12 (3): 364-372
19. Lux A, Martinka M, Vaculík M, White PJ. Root responses to cadmium in the rhizosphere:a review [J]. J Exp Bot, 2011, 62 (1): 21-37
20. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1- like transporters [J]. Ann Bot, 2009, 103 (1):1-11
21. 张腾. 转IRT1基因龙葵毛状根体系的建立及其对镉胁迫响应的初步探讨[D]. 北京:北京交通大学, 2015 [Zhang T. Research on Agrobacterium rhizogenes -mediated IRT1 gene transformation in Cd hyperaccumulator Solanum nigrum L. [D]. Beijing: Beijing Jiaotong University, 2015]
22. 何俊瑜, 任艳芳, 王阳阳, 李兆君. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J]. 生态学报, 2011, 31 (2): 522-528 [He JY, Ren YF, Wang YY, Li ZJ. Root orphological and physiological responses of rice seedlings with different tolerance to cadmium stress [J]. Acta Ecol Sin, 2011, 31 (2): 522-528]
23. 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳,龚明, 邹竹荣. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34 (9): 1916-1926 [Zhang MR, Yang YM, Cheng YX, Zhou T, Duan XY, Gong M, Zou ZR. Generation of reactive oxygen species and their functions and deleterious effects in plants [J]. Acta Bot Bor-Occid Sin, 2014, 34 (9): 1916-1926]
24. Yan H, Filardo F, Hu XT, Zhao XM, Fu DH. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves [J]. Environ Sci Poll Res, 2016: 233758-233769
25. 杜连彩. 铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响[J]. 中国蔬菜, 2008, 5: 17 [Du LC. Effects of lead stress on chlorophyll content and antioxidant system of pakchoi [J]. China Veget, 2008, 5: 17]
26. 田小霞, 李丽, 毛培春, 孟林, 郭强, 李杉杉. 锌胁迫下马蔺种质材料的耐受性与生理响应[J]. 应用与环境生物学报, 2017, 23 (1): 67-76 [Tian XX, Li L, Mao PCH, Meng L, Guo Q, Li SS. Tolerance and physiological responses of Iris lactea var. chinensis germplasm under zinc stress [J]. Chin J Appl Environ Biol, 2017, 23 (1): 67-76]
27. Sandalio LM, Dalurzo HC, Gomez M. Cadmium-induced changes in the growth and oxidative metabolism of pea plants [J]. J Exp Bot, 2001, 52 (364) : 2115-2126
28. 史静, 潘根兴, 夏运生, 张仕颖, 张乃明. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J]. 生态环境学报, 2013, 22 (5): 832-837 [Shi J, Pan GX, Xia YS, Zhang SY, Zhang NM. Effects of Cd on different rice growth and antioxidant enzyme system [J]. Ecol Environ, 2013, 22 (5): 832-837]
29. Sivaguru M, Liu J, Kochian LV. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance [J]. Plant J, 2013, 76 (2): 297-307
30. Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, Liu X. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress [J]. New Phytol, 2012, 196: 125-138
31. 陆志强, 陈昌徐, 马丽, 郑文教. 镉胁迫对白骨壤幼苗钾钠镁吸收与分配的影响[J]. 应用生态学报, 2015, 26 (5): 1313-1319 [Lu ZQ, Chen CX, Ma L, Zheng WJ. Absorption and distribution of K, Na and Mg in Avicennia marina seedlings under cadmium stress [J]. Chin J Appl Ecol, 2015, 26 (5):1313-1319]
32. 李花粉, 张福锁. 小麦根表铁氧化物及植物铁载体对植物吸收镉的影响[J]. 中国环境科学, 1997 (5): 432-436 [Li HF, Zhang FS. Effect of ferric hydroxide on root surface and phytosiderophore on cadmium uptake by wheat plants [J]. China Environ Sci, 1997 (5): 432-436]
33. 佘玮, 崔国贤, 赵丹博, 肖呈祥. 锌、铁缺失对苎麻吸收及转运重金属镉的影响[J]. 农业环境科学学报, 2014, 33 (2): 283-287 [She W, Cui GX, Zhao DB, Xiao CX. Cadmium uptake and transportation in two ramie cultivars under zinc and iron deficiency [J]. J Agro-Environ Sci, 2014, 33 (2): 283-287]
34. 李隼, 黄胜东, 赵福庚. 重金属镉对水稻根毛细胞钾离子吸收过程的影响[J]. 植物生理学报, 2011 (5): 481-487 [Li S, Huang SD, Zhao FG. Effects of cadmium on K+ uptake in root hair cells of rice. J Plant Physiol, 2011 (5): 481-487]
35.

相似文献/References:

[1]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(03):289.
 Xia Hanping.STUDIES ON CADMIUM IN SOIL-PLANT SYSTEM[J].Chinese Journal of Applied & Environmental Biology,1997,3(06):289.
[2]白红娟,张肇铭,李保珍,等.固定化球形红细菌去除镉的动力学及其与质粒的关系[J].应用与环境生物学报,2008,14(02):249.
 BAI Hongjuan,et al..Kinetics of Cadmium Removal by Immobilized Rhodobacter sphaeroides and Its Relation with Plasmid[J].Chinese Journal of Applied & Environmental Biology,2008,14(06):249.
[3]段学军** 黄春晓.重金属镉对水田土壤微生物基因多样性的影响[J].应用与环境生物学报,2008,14(04):510.
[4]潘响亮,张道勇,黄承琳.向日葵根分泌物对水合铁氧化物(HFO)吸附Cd2+的促进效应[J].应用与环境生物学报,2010,16(01):33.[doi:10.3724/SP.J.1145.2010.00033]
 HUANG Chengling,ZHANG Daoyong,PAN Xiangliang.Enhanced Adsorption of Cd2+ to HFO by Root Exudates from Helianthus annuus[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):33.[doi:10.3724/SP.J.1145.2010.00033]
[5]赵晶,冯文强,秦鱼生,等.不同氮肥对小麦吸收镉的影响*[J].应用与环境生物学报,2010,16(01):58.[doi:10.3724/SP.J.1145.2010.00058]
 ZHAO Jing,FENG Wenqiang,QIN Yusheng,et al.Effects of Different Nitrogen Fertilizers on Cadmium Uptake by Wheat*[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):58.[doi:10.3724/SP.J.1145.2010.00058]
[6]李凝玉,卢焕萍,李志安,等.籽粒苋对土壤中镉的耐性及积累特征研究[J].应用与环境生物学报,2010,16(01):28.[doi:10.3724/SP.J.1145.2010.00028]
 LI Ningyu,LU Huanping,LI Zhian,et al.Cadmium tolerance and accumulation in Amaranthus hypochondriacus L.[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):28.[doi:10.3724/SP.J.1145.2010.00028]
[7]曹哲明,杨健.不同浓度Cd2+对鲤鱼基因组DNA的影响[J].应用与环境生物学报,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
 CAO Zheming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):457.[doi:10.3724/SP.J.1145.2010.00457]
[8]湛方栋,何永美,李元,等.云南会泽废弃铅锌矿区和非矿区小花南芥根际真菌的耐镉性[J].应用与环境生物学报,2010,16(04):572.[doi:10.3724/SP.J.1145.2010.00572]
 ZHAN Fangdong,HE Yongmei,LI Yuan,et al.Cadmium Tolerance of Rhizosphere Fungi of Arabis alpina in Abandoned Lead-zinc Mining and Non-mining Area in Huize, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):572.[doi:10.3724/SP.J.1145.2010.00572]
[9]王萌,龚双姣,刘珊珊,等.表面活性剂对沉积物中纳米TiO2与Cd单一及复合污染生态毒理学效应的影响[J].应用与环境生物学报,2015,21(05):791.[doi:10.3724/SP.J.1145.2015.07034]
 WANG Meng,GONG Shuangjiao,LIU Shanshan,et al.Impacts of surfactants on the ecotoxicological effects of TiO2-NP and/or Cd contamination in sediments[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):791.[doi:10.3724/SP.J.1145.2015.07034]
[10]周伟,邓良基,邓欧平,等.成都平原菌渣还田土壤镉铅含量变化和环境容量[J].应用与环境生物学报,2017,23(04):701.[doi: 10.3724/SP.J.1145.2016.08038]
 ZHOU Wei,DENG Liangji**,DENG Ouping,et al.Isolation and identification of dicamba-degrading bacterium Ochrobactrum sp. 3-3 and investigation of its degradation characteristics[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):701.[doi: 10.3724/SP.J.1145.2016.08038]

更新日期/Last Update: 2018-12-25