1 Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, Wu XL, Akamatsu T, Taguchi H, Kida K. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37 [J]. Appl Microbiol Biotechnol, 2016, 100 (3): 1531-1542
2 Li YC, Gou ZX, Zhang Y, Xia ZY, Tang YQ, Kida K. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation [J]. Braz J Microbiol, 2017, 48 (4): 791-800
3 Nogueira MD, Branco RVC, Moreira DAJR, Pepe DMLM. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects [J]. Int J Mol Sci, 2016, 17 (3): 207
4 Laluce C, Schenberg AC, Gallardo JC, Coradello LF, Pombeiro-Sponchiado SR. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol-a review [J]. Appl Biochem Biotechnol, 2012, 166 (8): 1908-1926
5 Demeke MM, Dietz H, Li Y, Foulquié-Moreno, MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering[J]. Biotechnol Biofuels, 2013, 6(1):89.
6 Zeng WY, Tang YQ, Gou M, Sun ZY, Xia ZY, Kida K. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae, with improved xylose utilization capability[J]. Appl Microbiol Biotechnol, 2017, 101 (4): 1753-1767
7 Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: technology design and its impact on process efficiency [J]. Biotechnol Adv, 2015, 33 (6): 1091-1107
8 Zhu JQ, Qin L, Li WC, Zhang J, Bao J, Huang YD, Li BZ, Yuan YJ. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: overcoming the inhibitors by non-tolerant yeast [J]. Bioresour Technol, 2015, 198: 39-46
9 Zhu JQ, Li X, Qin L, Li WC, Li HZ, Li BZ, Yuan YJ. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production [J]. Bioresour Technol, 2016, 218: 380-387
10 Fernandes MC, Ferro MD, Paulino AF, Mendes JA, Gravitis J, Evtuguin DV, Xavier AMRB. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion [J]. Bioresour Technol, 2015, 186: 309-315
11 Rana V, Eckard AD, Ahring B. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus [J]. SpringerPlus, 2014, 3 (1): 516
12 Cassells B, Karhumaa K, Sànchez INV, Lidén G. Hybrid SSF/SHF processing of SO2 pretreated wheat straw-tuning co-fermentation by yeast inoculum size and hydrolysis time. Appl Biochem Biotechnol, 2017, 181 (2): 536-547
13 Tomáspejó E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains [J]. Biotechnol Bioeng, 2008, 100 (6): 1122-1131
14 Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J]. Microb Cell Fact, 2011, 10 (1):2
15 肖琴, 曾维怡, 汤岳琴, 木田建次. 转醛醇酶基因差异表达影响酵母发酵木糖及耐受乙酸性能[J]. 微生物学通报, 2014, 41 (6): 1094-1108 [Xiao Q, Zeng WY, Tang YQ, Kenji K. Effect of differential expression of transaldolase gene on xylose fermentation and acetic acid tolerance of Saccharomyces cerevisiae strain [J]. Microbiol Chin, 2014, 41 (6): 1094-1108]
16 Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2006, 71 (3): 339-349
17 Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. Multiple gene-mediated NAD(P) H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2008, 81 (4): 743-753
18 Allen SA, Clark W, Mccaffery JM, Zhen C, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae [J]. Biotechnol Biofuels, 2010, 3 (1): 2
19 Juhnke H, Krems B, K?tter P, Entian KD. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress [J]. Mol Gen Genet, 1996, 252 (1): 456-464
20 Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling [J]. PLoS ONE, 2013, 8 (4): e61748
21 Larroy C, Parés X, Biosca JA. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family [J]. Eur J Biochem, 2002, 269 (22): 5738-5745
22 Lu C, Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain [J]. Appl Environ Microb, 2007, 73: 6072
23 Jin YS, Ni H, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity [J]. Appl Environ Microb, 2003, 69 (1): 495-503
24 Larsson S, Palmqvist E, Hahn-H?gerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood [J]. Enzyme Microb Technol, 1999, 24 (3-4): 151-159
25 Almeida JR, Modig T, Petersson A, H?hn-H?gerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J]. J Chem Technol Biotechnol, 2007, 82 (4): 340 -349
26 张影, 苟敏, 孙照勇, 夏子渊, 汤岳琴. 混合糖发酵条件下甲酸抑制木糖发酵的机制研究[J]. 应用与环境生物学报, 2017, 23 (6): 990-998 [Ying Z, Min G, Sun ZY, Xia ZY, Tang YQ. The inhibitory mechanism of formic acid on xylose fermentation during mixed sugar fermentation [J]. Chin J Appl Environ Biol, 2017, 23 (6): 990-998]
27
[1]张影,苟敏,孙照勇,等.混合糖发酵条件下甲酸抑制木糖发酵的机制[J].应用与环境生物学报,2017,23(06):990.[doi:10.3724/SP.J.1145.2017.02011]
ZHANG Ying,GOU Min,SUN Zhaoyong,et al.The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):990.[doi:10.3724/SP.J.1145.2017.02011]
[2]陈栋,吴娅菁,缪晡,等.基于等离子体诱变提高木糖利用重组酿酒酵母的抑制物耐受性[J].应用与环境生物学报,2021,27(06):1464.[doi:10.19675/j.cnki.1006-687x.2021.05006]
CHEN Dong,WU Yajing,MIAO Bu & TANG Yueqin,et al.Improvement of inhibitor tolerance of xylose-fermenting recombinant Saccharomyces cerevisiae via atmospheric and room temperature plasma mutagenesis[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1464.[doi:10.19675/j.cnki.1006-687x.2021.05006]
[3]陈栋 吴娅菁** 缪晡 汤岳琴.基于等离子体诱变提高木糖利用重组酿酒酵母的抑制物耐受性[J].应用与环境生物学报,2022,28(03):1.[doi:10.19675/j.cnki.1006-687x.2021.05006]
CHEN Dong,WU Yajing,**,et al.Improvement of inhibitor tolerance of xylose-fermenting recombinant Saccharomyces cerevisiae via atmospheric and room temperature plasma mutage nesis[J].Chinese Journal of Applied & Environmental Biology,2022,28(04):1.[doi:10.19675/j.cnki.1006-687x.2021.05006]