|本期目录/Table of Contents|

[1]丁伟军,李波,张影,等.木糖发酵酿酒酵母抑制物耐受能力提升及利用秸秆原料的乙醇发酵性能[J].应用与环境生物学报,2018,24(04):879-888.[doi:10.19675/j.cnki.1006-687x.2018.05019]
 DING Weijun,LI Bo,ZHANG Ying,et al.Enhancement of inhibitor tolerance during xylose fermentation of Saccharomyces cerevisiae and ethanol fermentation using agricultural straw[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):879-888.[doi:10.19675/j.cnki.1006-687x.2018.05019]
点击复制

木糖发酵酿酒酵母抑制物耐受能力提升及利用秸秆原料的乙醇发酵性能
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
879-888
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Enhancement of inhibitor tolerance during xylose fermentation of Saccharomyces cerevisiae and ethanol fermentation using agricultural straw
作者:
丁伟军李波张影陈娅婷缪晡汤岳琴
1中石化上海工程有限公司 上海 200120 2四川大学建筑与环境学院环境生物技术研究中心 成都 6100653四川省环境保护有机废弃物资源化利用重点实验室 成都 610065
Author(s):
DING Weijun1 LI Bo2 ZHANG Ying2 CHEN Yating2 MIAO Bu1 & TANG Yueqin2 3**
1 Sinopec Shanghai Engineering Co. Ltd., Shanghai 200120, China2 Environmental Biotechnology Research Center, College of Architecture and Environment, Sichuan University, Chengdu 610065, China3 Sichuan Environmental Protection Key Laboratory of Organic Waste Resource Utilization, Chengdu 610065, China
关键词:
纤维素燃料乙醇木糖发酵抑制物耐受分步糖化发酵(SHF)预糖化-同步糖化发酵(P-SSF)同步糖化发酵(SSF)分批补料-同步糖化发酵(FB-SSF)TAL1基因
Keywords:
lignocellulosic bioethanol xylose fermentation inhibitor tolerance separate hydrolysis and fermentation (SHF) presaccharification-simultaneous saccharification and fermentation (P-SSF) simultaneous saccharification and fermentation (SSF) fed-batch s
分类号:
Q786 : Q920.6
DOI:
10.19675/j.cnki.1006-687x.2018.05019
摘要:
木糖利用能力和抑制物耐受能力优良的工业酿酒酵母菌株以及合理的糖化发酵工艺是纤维素燃料乙醇生产的两个关键. 对一株工业酿酒酵母菌的磷酸戊糖途径转醛醇酶基因TAL1进行差异过表达,评价其在8种典型抑制物存在时对菌株利用木糖的影响;利用TAL1过表达菌株研究油菜秸秆预处理物料中抑制物含量高低对分步糖化发酵(SHF)、预糖化-同步糖化发酵(P-SSF)和同步糖化发酵(SSF)3种不同糖化发酵方式发酵过程的影响,探讨高固含量发酵的可行性. 结果显示,TAL1基因过表达提高了菌株的木糖代谢能力和对8种典型抑制物的耐受能力,适度过表达菌株表现最优,有抑制物存在时的木糖消耗速率提升了20%-70%. 秸秆预处理物料中抑制物总含量约为4 g/L时,SHF无法正常发酵,SSF的乙醇收率接近70%,略高于P-SSF;当物料中抑制物总含量下降到约2 g/L时,3种方式都能顺利发酵,SSF表现最优,96 h时的乙醇收率为86.5%,但SSF(96 h)和P-SSF(112 h)所需糖化发酵总时间远低于SHF(144 h);总固含量约为25%的分批补料-同步糖化发酵(FB-SSF)的乙醇浓度和乙醇收率分别达到54.2 g/L和67.2%. 上述结果表明,TAL1基因适度过表达提升了菌株的木糖发酵和抑制物耐受能力,菌株已具备比较优秀的发酵和耐受抑制物的能力;预处理物料中抑制物含量相对较高时采用SSF或P-SSF工艺,而抑制物浓度相对较低时,3种糖化发酵方式都可以采用,但SSF所需发酵时间最短,生产能力最高. (图6 表2 参26)
Abstract:
The industrial Saccharomyces cerevisiae strain that has excellent xylose utilization and inhibitor tolerant ability as well as rational saccharification and fermentation process are the two key factors in the production of lignocellulosic ethanol. A key gene (transaldolase gene TAL1) involved in the pentose phosphate pathway of the S. cerevisiae strain was overexpressed differentially to evaluate the effect of differential overexpression of TAL1 on the utilization of xylose in the presence of eight typical inhibitors. Using the TAL1-overexpressed strain, the effect of the inhibitor content in pretreated straw on the fermentation efficiencies of three different saccharification and fermentation processes (i.e. separate hydrolysis and fermentation (SHF), presaccharification-simultaneous saccharification and fermentation (P-SSF), and simultaneous saccharification and fermentation (SSF)) was studied. In addition, the feasibility of high solid load fermentation was investigated. The results showed that the over expression of the TAL1 gene increased the xylose utilizing ability and the tolerance to eight typical inhibitors. The moderate overexpressed strain showed the best performance with an increase of 20%-70% for the xylose consumption rate in the presence of inhibitors. When the total inhibitor content was approximately 4 g/L in the pretreated straw, the ethanol production was difficult during the SHF process, whereas the ethanol yield of SSF was nearly 70%, which was slightly higher than that of P-SSF. When the total inhibitor content in the pretreated straw decreased to approximately 2 g/L, all three processes performed well. SSF had the best performance with an ethanol yield of 86.5% after 96 h fermentation. For SSF (96 h) and P-SSF (112 h), the total time required for saccharification and fermentation was much shorter than that of SHF (144 h). In high solid load fermentation (total solid content was 25%) with fed-batch simultaneous saccharification and fermentation, the ethanol concentration and ethanol yield reached 54.2 g/L and 67.2%, respectively. Results revealed that moderate over expression of TAL1 gene effectively improved the xylose utilization and inhibitor tolerance of S. cerevisiae, and the produced strain had excellent abilities of xylose utilization and inhibitor tolerance. When the inhibitor content in the pretreatment straw was high, SSF or P-SSF was preferred, whereas when the inhibitor content in the pretreatment materials was low, any of these three processes was feasible; however, the SSF process had the shortest fermentation time and highest productivity.

参考文献/References:

1 Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, Wu XL, Akamatsu T, Taguchi H, Kida K. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37 [J]. Appl Microbiol Biotechnol, 2016, 100 (3): 1531-1542
2 Li YC, Gou ZX, Zhang Y, Xia ZY, Tang YQ, Kida K. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation [J]. Braz J Microbiol, 2017, 48 (4): 791-800
3 Nogueira MD, Branco RVC, Moreira DAJR, Pepe DMLM. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects [J]. Int J Mol Sci, 2016, 17 (3): 207
4 Laluce C, Schenberg AC, Gallardo JC, Coradello LF, Pombeiro-Sponchiado SR. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol-a review [J]. Appl Biochem Biotechnol, 2012, 166 (8): 1908-1926
5 Demeke MM, Dietz H, Li Y, Foulquié-Moreno, MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering[J]. Biotechnol Biofuels, 2013, 6(1):89.
6 Zeng WY, Tang YQ, Gou M, Sun ZY, Xia ZY, Kida K. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae, with improved xylose utilization capability[J]. Appl Microbiol Biotechnol, 2017, 101 (4): 1753-1767
7 Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: technology design and its impact on process efficiency [J]. Biotechnol Adv, 2015, 33 (6): 1091-1107
8 Zhu JQ, Qin L, Li WC, Zhang J, Bao J, Huang YD, Li BZ, Yuan YJ. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: overcoming the inhibitors by non-tolerant yeast [J]. Bioresour Technol, 2015, 198: 39-46
9 Zhu JQ, Li X, Qin L, Li WC, Li HZ, Li BZ, Yuan YJ. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production [J]. Bioresour Technol, 2016, 218: 380-387
10 Fernandes MC, Ferro MD, Paulino AF, Mendes JA, Gravitis J, Evtuguin DV, Xavier AMRB. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion [J]. Bioresour Technol, 2015, 186: 309-315
11 Rana V, Eckard AD, Ahring B. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus [J]. SpringerPlus, 2014, 3 (1): 516
12 Cassells B, Karhumaa K, Sànchez INV, Lidén G. Hybrid SSF/SHF processing of SO2 pretreated wheat straw-tuning co-fermentation by yeast inoculum size and hydrolysis time. Appl Biochem Biotechnol, 2017, 181 (2): 536-547
13 Tomáspejó E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains [J]. Biotechnol Bioeng, 2008, 100 (6): 1122-1131
14 Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J]. Microb Cell Fact, 2011, 10 (1):2
15 肖琴, 曾维怡, 汤岳琴, 木田建次. 转醛醇酶基因差异表达影响酵母发酵木糖及耐受乙酸性能[J]. 微生物学通报, 2014, 41 (6): 1094-1108 [Xiao Q, Zeng WY, Tang YQ, Kenji K. Effect of differential expression of transaldolase gene on xylose fermentation and acetic acid tolerance of Saccharomyces cerevisiae strain [J]. Microbiol Chin, 2014, 41 (6): 1094-1108]
16 Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2006, 71 (3): 339-349
17 Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. Multiple gene-mediated NAD(P) H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2008, 81 (4): 743-753
18 Allen SA, Clark W, Mccaffery JM, Zhen C, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae [J]. Biotechnol Biofuels, 2010, 3 (1): 2
19 Juhnke H, Krems B, K?tter P, Entian KD. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress [J]. Mol Gen Genet, 1996, 252 (1): 456-464
20 Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling [J]. PLoS ONE, 2013, 8 (4): e61748
21 Larroy C, Parés X, Biosca JA. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family [J]. Eur J Biochem, 2002, 269 (22): 5738-5745
22 Lu C, Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain [J]. Appl Environ Microb, 2007, 73: 6072
23 Jin YS, Ni H, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity [J]. Appl Environ Microb, 2003, 69 (1): 495-503
24 Larsson S, Palmqvist E, Hahn-H?gerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood [J]. Enzyme Microb Technol, 1999, 24 (3-4): 151-159
25 Almeida JR, Modig T, Petersson A, H?hn-H?gerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J]. J Chem Technol Biotechnol, 2007, 82 (4): 340 -349
26 张影, 苟敏, 孙照勇, 夏子渊, 汤岳琴. 混合糖发酵条件下甲酸抑制木糖发酵的机制研究[J]. 应用与环境生物学报, 2017, 23 (6): 990-998 [Ying Z, Min G, Sun ZY, Xia ZY, Tang YQ. The inhibitory mechanism of formic acid on xylose fermentation during mixed sugar fermentation [J]. Chin J Appl Environ Biol, 2017, 23 (6): 990-998]
27

相似文献/References:

[1]张影,苟敏,孙照勇,等.混合糖发酵条件下甲酸抑制木糖发酵的机制[J].应用与环境生物学报,2017,23(06):990.[doi:10.3724/SP.J.1145.2017.02011]
 ZHANG Ying,GOU Min,SUN Zhaoyong,et al.The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):990.[doi:10.3724/SP.J.1145.2017.02011]

更新日期/Last Update: 2018-08-25