|本期目录/Table of Contents|

[1]欧延升,汪霞,李佳,等.不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J].应用与环境生物学报,2019,25(01):38-45.[doi:10.19675/j.cnki.1006-687x.2018.05005]
 OU Yansheng,WANG Xia**,LI Jia,et al.Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):38-45.[doi:10.19675/j.cnki.1006-687x.2018.05005]
点击复制

不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年01期
页码:
38-45
栏目:
研究论文
出版日期:
2019-02-25

文章信息/Info

Title:
Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years
作者:
欧延升 汪霞 李佳 贾海霞 赵云飞 黄政 洪苗苗
兰州大学资源环境学院,西部环境教育部重点实验室,甘肃省环境污染预警与控制重点实验室 兰州 730000
Author(s):
OU Yansheng WANG Xia** LI Jia JIA Haixia ZHAO Yunfei HUANG Zheng & HONG Miaomiao
Key Laboratory of Environmental Pollution Prediction and Control of Gansu Province, Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
关键词:
恢复年限人工草地碳氮磷生态化学计量学
Keywords:
restoration years artificial grassland carbon nitrogen and phosphorus ecological stoichiometry
分类号:
S812.2
DOI:
10.19675/j.cnki.1006-687x.2018.05005
摘要:
应用对比分析和空间代替时间的方法,以黄土高原丘陵沟壑区罗玉沟流域不同恢复年限的人工草地土壤为研究对象,分析土壤碳氮磷含量及其生态化学计量特征的变化,探讨它们与土壤理化性质之间的关系. 结果表明,随着恢复年限的增加,人工草地土壤有机碳、全氮和全磷含量均增加,恢复至8年以后有机碳含量保持平稳. 人工草地土壤C/N呈先增后减的趋势,变化范围为10.66-13.62,与全国土壤C/N平均水平持平;土壤C/P和N/P呈先增后减再增的趋势,变化范围分别为9.19-13.18和0.82-1.17,均低于全国水平. 土壤有机碳、全氮和全磷与土壤含水率、容重、孔隙度和pH值之间呈显著的相关关系(P < 0.01),土壤有机碳、全氮和全磷含量间具有显著的正相关性(P < 0.01). C/N与全氮含量存在显著负相关关系,与有机碳含量不存在相关性,说明C/N受氮素影响较大;C/P与有机碳含量呈显著正相关(P < 0.01),与全磷含量不相关,则说明C/P主要受碳素限制;而N/P与全氮、全磷含量均达到显著正相关(P < 0.01),说明N/P由氮素、磷素共同决定. 由此可知,氮和磷是该地区主要的限制营养元素;本研究结果可为当地通过合理利用草地恢复方式改善土壤质量和维护草地健康提供理论参考. (图2 表4 参53)
Abstract:
Using the methods of comparative analysis and substituting temporal serial with spatial serial, we investigated the artificial grassland soil with different recovery years in Luoyugou watershed in the hilly gully region of loess plateau. In particular, we analyzed the content of carbon, nitrogen, and phosphorus and their ecological stoichiometric characteristics and discussed their relationships with soil physical and chemical properties. The results showed that with the increase of restoration years, the content of organic carbon, total nitrogen, and total phosphorus in artificial grassland increased, and the organic carbon content remained stable after eight years. The soil C/N ratio in artificial grassland first showed an increasing trend and then a decreasing trend, and the variation range was 10.66–13.62, which was equal to the national soil C/N average level. The soil C/P and N/P ratios showed an increasing-decreasing-increasing trend, and the ranges of variation were 9.19–13.18 and 0.82–1.17, respectively, which was lower than the corresponding national level. A significant correlation was observed between soil organic carbon, total nitrogen, total phosphorus and soil moisture content, density, porosity, pH. A significant positive correlation was observed between soil organic carbon, total nitrogen, and total phosphorus (P < 0.01). The C/N ratio had a significant negative correlation with total nitrogen, but not with organic carbon (P < 0.01), indicating that it was significantly affected by the total nitrogen content. The C/P ratio was positively correlated with organic carbon, but not with total phosphorus (P < 0.01), indicating that it was mainly controlled by the organic carbon content. The N/P ratio was positively correlated with total nitrogen and total phosphorus (P < 0.01), indicating that it was significantly affected by total N and P content. Therefore, N and P were found to be the main restricted nutrients in this area. Planting artificial grassland not only changes soil structure and nutrient content, but also plays an active role in maintaining soil and water, regulating climate, and so on. It can be used as one of the effective measures for grassland ecological restoration in the Luoyugou Basin.

参考文献/References:

1. Paul E. Nitrogen Cycling in Terrestrial Ecosystems [J]. Environ Biogeochem, 1976, 1: 225-243
2. 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28 (8): 3937-3947 [Wang SQ, Yu GR. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements [J]. Acta Ecol Sin, 2008, 28 (8): 3937-3947]
3. Zeng QC, Liu Y, Fang Y, Ma RT, Lal R, An SS, Huang YM. Impact of vegetation restoration on plants and soil C:N:P stoichiometry on the Yunwu Mountain Reserve of China [J]. Ecol Eng, 2017, 109: 92-100
4. Niu SQ, Ren LN, Song LJ, Duan YY, Huang T, Han XH, Hao WF. Plant stoichiometry characteristics and relationships with soil nutrients in Robinia pseudoacacia communities of different planting ages [J]. Acta Ecol Sin, 2017, 37 (6): 355-362
5. 贺合亮, 阳小成, 王东, 孙誉育, 尹春英, 李婷, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征[J]. 应用与环境生物学报, 2015, 21 (6): 1128-1135 [He HL, Yang XC, Wang D, Sun YY, Yin CY, Li T, Li YX, Zhou GY, Zhang L, Liu Q. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus of Sibiraea angustata shrub in eastern Qinghai-Tibetan Plateau [J]. Chin J Appl Environ Biol, 2015, 21 (6): 1128-1135]
6. Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems [J]. Ecol Lett, 2007, 10 (12): 1135-1142
7. 侯阁, 孙建, 朱军涛, 罗广祥, 王金牛. 羌塘高原高寒草地植物地上地下碳氮生态化学计量特征及其影响因素[J]. 应用与环境生物学报, 2018, 24 (2): 187-194 [Hou G, Sun J, Zhu JT, Luo GX, Wang JN. Carbon: nitrogen ecological stoichiometry of the alpine steppe between the aboveground and belowground parts of plants and relevant impact factors in the Qiangtang Plateau [J]. Chin J Appl Environ Biol, 2018, 24 (2): 187-194]
8. 程滨, 赵永军, 张文广, 安树青. 生态化学计量学研究进展[J]. 生态学报, 2010, 30 (6): 1628-1637 [Cheng B, Zhao YJ, Zhang WG, An SQ. The research advances and prospect of ecological stoichiometry [J]. Acta Ecol Sin, 2010, 30 (6): 1628-1637]
9. 李裕元, 邵明安, 陈洪松, 霍竹, 郑纪勇. 水蚀风蚀交错带植被恢复对土壤物理性质的影响[J]. 生态学报, 2010, 30 (16): 4303-4316 [Li YY, Shao MA, Chen HS, Huo Z, Zheng JY. Impacts of vegetation recovery on soil physical properties in the cross area of wind-water erosion [J]. Acta Ecol Sin, 2010, 30 (16): 4306-4316 ]
10. Wang CT, Wang GX, Liu W, Wang Y, Hu L, Ma L. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow [J]. Isr J Ecol Evol, 2013, 59 (3): 141-153
11. 马金辉. 天水罗裕沟流域土壤侵蚀时空格局模拟研究[D]. 兰州: 兰州大学, 2007 [Ma JH. The modeling of temporal-spatial pattern of soil erosion in Luoyugou watershed, Tianshui, China [D]. Lanzhou: Lanzhou University, 2007]
12. Wang DD, Yu XX, Zhang JJ, Jia GD, Zhang HB, Liu ZQ, Hou GR. The impacts of Robinia pseudoacacia litter cover and roots on soil erosion in the Loess Plateau, China [J]. Chem Ecol, 2017, 33 (6): 528-542
13. Han YN, Niu JZ, Xin ZB, Zhang W, Zhang TL, Wang XL, Zhang YS. Optimization of land use pattern reduces surface runoff and sediment loss in a Hilly-Gully watershed at the Loess Plateau, China [J]. For Syst, 2016 , 25 (1): 1-14
14. 赵阳, 余新晓. 黄土丘陵沟壑区典型流域气候和土地利用变化对径流泥沙产量的影响[J]. 北京林业大学学报, 2013, 35 (3): 39-45 [Zhao Y, Yu XX. Effects of climate variation and land use change on runoff-sediment yield in typical watershed of Loess Hilly-Gully region [J]. J Beijing For Univ, 2013, 35 (3): 39-45]
15. 安乐平, 秦瑞杰, 康廷祥, 韩冀. 黄土丘陵沟壑区罗玉沟流域水沙特性分析[J]. 中国水土保持, 2014 (12): 36-39 [An LP, Qin RJ, Kang TX, Han. Characteristic of runoff and sediment of Luoyugou Watershed of Gullied Rolling Loess area [J]. Soil Water Conserv China, 2014 (12): 36-39 ]
16. 王学霞, 董世魁, 李媛媛, 李小艳, 温璐, 吴娱. 三江源区草地退化与人工恢复对土壤理化性状的影响[J]. 水土保持学报, 2012, 26 (4): 113-117, 122 [Wang XX, Dong SK, Li YY, Li XY, Wen L, Wu Y. Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-river headwater [J]. J Soil Water Conserv, 2012, 26 (4): 113-117, 122]
17. 饶丽仙. 宁夏典型草原区退耕草地优势植物及土壤C、N、P生态化学计量学特征研究[D]. 银川: 宁夏大学, 2017 [Rao LX. Research of the dominant plants and soil C, N, P ecologic stoichiometry characteristics on the grassland from cultivated land in a typical steppe in Ningxia [D]. Yinchuan: Ningxia University, 2017]
18. Liu Y, Dang ZQ, Tian FP, Wang D, Wu GL. Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid region (China) [J]. Land Deg Dev, 2017, 28: 189–198
19. Liu JH, Wu JJ, Su HB, Gao ZH, Wu ZT. Effects of grazing exclusion in Xilin Gol grassland differ between regions [J]. Ecol Eng, 2017, 99: 271-281
20. 张学权. 不同植被恢复土壤容重和孔隙度特征分析[J]. 成都大学学报 (自然科学版), 2017, 36 (3): 325-327 [Zhang XQ. Analysis of soil bulk density and porosity in different vegetation restoration [J]. J Chengdu Univ, 2017, 36 (3): 325-327]
21. 彭文英, 张科利, 杨勤科. 黄土坡面土壤性质随退耕时间的动态变化研究[J]. 干旱区资源与环境, 2006, 20 (5): 153-158 [Peng WY, Zhang KL, Yang QK. Research on soil property dynamics in retired farmland in the loess sloping land [J]. J Arid Land Resour Environ, 2006, 20 (5): 153-158]
22. 王维奇, 曾从盛, 钟春棋, 仝川. 人类干扰对闽江河口湿地碳、氮、磷生态化学计量学特征的影响[J]. 环境科学, 2010, 31 (10): 2411-2416 [Wang WQ, Zeng CS, Zhong CQ, Tong C. Effect of human disturbance on ecological stoichiometry characteristics of soil Carbon, Nitrogen and Phosphorus in Minjiang River estuarine wetland [J]. Environ Sci, 2010, 31 (10): 2411-2416]
23. 薛超玉, 焦峰, 张海东, 汝海丽. 黄土丘陵区弃耕地恢复过程中土壤与植物恢复特征[J]. 草业科学, 2016, 33 (3): 368-376 [Xue CY, Jiao F, Zhang HD, Ru HL. The characteristics of plant species and soil quality in the restoration process of the Loess Hilly Region [J]. Pratac Sci, 2016, 33 (3): 368-376]
24. 巩杰, 陈利顶, 傅伯杰, 李延梅, 黄志霖, 黄奕龙, 彭鸿嘉. 黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报, 2004, 15 (12): 2292-2296 [Gong J, Chen LD, Fu BJ, Li YM, Huang ZL, Huang YL, Peng HJ. Effects of land use and vegetation restoration on soil quality in a small catchment of the Loess Plateau [J]. Chin J Appl Ecol, 2004, 15 (12): 2292-2296]
25. 张剑, 汪思龙, 王清奎, 刘燕新. 不同森林植被下土壤活性有机碳含量及其季节变化[J]. 中国生态农业学报, 2009, 17 (1): 41-47 [Zhang J, Wang SL, Wang QK, Liu YX. Content and seasonal change in soil labile organic carbon under different forest covers [J]. Chin J Ecol Agric, 2009, 17 (1): 41-47]
26. Deng L, Shangguan ZP. Afforestation drives soil carbon and nitrogen changes in China [J]. Land Degrad Dev, 2017, 28: 151-165
27. Cross WF, Benstead JP, Forest PC, Thomas SA. Ecological stoichiometry in fresh water benthic systems: recent progress and perspectives [J]. Freshwater Biol, 2005, 50 (11): 1895-1912
28. 刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量学特征[J]. 植物生态学报, 2010, 34 (1): 64-71 [Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China [J]. Chin J Plant Ecol, 2010, 34 (1): 64-71]
29. 李炜, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征[J]. 应用生态学报, 2015, 26 (1): 9-16 [Li W, Zheng ZC, Li TX. Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages [J]. Chin J Appl Ecol, 2015, 26 (1): 9-16]
30. 邰继承, 张丽妍, 杨恒山. 种植年限对紫花苜蓿栽培草地草产量及土壤氮、磷、钾含量的影响[J]. 草业科学, 2009, 26 (12): 82-86 [Tai JC, Zhang LY, Yang HS. Effect of different planting years on the yield of alfalfa and content of N, P , K in soil [J]. Pratac Sci, 2009, 26 (12): 82-86]
31. 张海东, 汝海丽, 焦峰, 薛超玉, 郭美丽. 黄土丘陵区退耕时间序列梯度上草本植被群落与土壤C、N、P、K 化学计量学特征[J]. 环境科学, 2016, 37 (3): 1128-1138 [Zhang HD, Ru HL, Jiao F, Xue CY, Guo ML. C, N, P, K stoichiometric characteristic of leaves, root and soil in different abandoned years in Loess Plateau [J]. Environ Sci, 2016, 37 (3): 1128-1138 ]
32. Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecol Appl, 2002, 10 (2): 423-436
33. 邱扬, 傅伯杰, 王军, 陈利顶. 黄土高原小流域土壤养分的时空变异及其影响因子[J]. 自然科学进展, 2004, 14 (3): 294-299 [Qiu Y, Fu BJ, Wang J, Chen LD. Spatial and temporal variation of soil nutrients in small watershed of loess plateau and its influencing factors [J]. Prog Nat Sci, 2004, 14 (3): 294-299 ]
34. 王振, 王子煜, 韩清芳, 李文静, 韩丽娜, 丁瑞霞, 贾志宽, 杨宝平. 黄土高原苜蓿草地土壤碳、氮变化特征研究[J]. 草地学报, 2013, 21 (6): 1073-1079 [Wang Z, Wang ZY, Han QF, Li WJ, Han LN, Ding RX, Jia ZK, Yang BP. Soil carbon and nitrogen variation characteristics of Alfalfa grassland in Loess Plateau Area [J]. Acta Agrestia Sin, 2013, 21 (6): 1074-1079 ]
35. 张良侠, 樊江文, 张文彦, 唐风沛. 京津风沙源治理工程对草地土壤有机碳库的影响——以内蒙古锡林郭勒盟为例[J]. 应用生态学报, 2014, 25 (2): 374-380 [Zhang LX, Fan JW, Zhang WY, Tang FP. Impact of the Beijing and Tianjin Sand Source Control Project on the grassland soil organic carbon storage: a case study of Xilingol League, Inner Mongolia, China [J]. Chin J Appl Ecol, 2014, 25 (2): 374-380]
36. Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98 (1-3): 139-151
37. 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000 [Huang CY. Soil Science [M]. Beijing: Chines Agricultural Press, 2000]
38. ?gren GI. Stoichiometry and nutrition of plant growth in natural communities [J]. Annu Rev Ecol Evol Syst, 2008, 39 (39): 153-170
39. 朱秋莲, 邢肖毅, 张宏, 安韶山. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33 (15): 4674-4682 [Zhu QL, Xing XY, Zhang H, An SS. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region [J]. Acta Ecol Sin, 2013, 33 (15): 4674-4682]
40. Güsewell S, Koerselman W, Verhoeven JTA. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands [J]. Ecol Appl, 2003, 13 (2): 372-384
41. Cleveland CC, Liptzin D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85 (3): 235-252
42. Yuan ZY, Chen HY, Reich PB. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus [J]. Nat Commun, 2011, 2 (1): 344
43. Yang YH, Fang JY, Guo DL, Ji CJ, Ma WH. Vertical patterns of soil carbon, nitrogen and carbon: Nitrogen stoichiometry in Tibetan grasslands [J]. Biogeosci Disc, 2010, 7: 1-24
44. Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere [M]. Princeton: Princeton University Press, 2002
45. 李红林, 贡璐, 朱美玲, 刘曾媛, 解丽娜, 洪毅. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52 (6): 1345-1355 [Li HL, Gong L, Zhu ML, Liu ZY, Xie LN, Hong Y. Stoichiometric characteristics of soil in an oasis on northern edge of Tarim Basin, China [J]. Acta Pedol Sin, 2015, 52 (6): 1345-1355]
46. 肖烨, 黄志刚, 武海涛, 吕宪国. 三江平原4种典型湿地土壤碳氮分布差异和微生物特征[J]. 应用生态学报, 2014, 25 (10): 2847-2854 [Xiao Y, Huang ZG, Wu HT, Lü XG. Carbon and nitrogen distributions and microbial characteristics in the soils of four types of wetlands in Sanjiang Plain, Northeast China [J]. Chin J Appl Ecol, 2014, 25 (10): 2847-2854]
47. 王长庭, 龙瑞军, 王启基, 景增春, 尚占环, 丁路明. 高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J]. 草业学报, 2005, 14 (4): 15-20 [Wang CT, Long RJ, Wang QJ, Jing ZC, Shang ZH, Ding LM. Distribution of organic matter, nitrogen and phosphorus along an altitude gradient and productivity change and their relationships with environmental factors in the Alpine meadow [J]. Acta Pratac Sin, 2005, 14 (4): 15-20]
48. 王华静, 宁龙梅, 徐留兴, 黄慧, 杜鹃. 川西北高寒地区土壤有机碳含量垂直分布特征[J]. 土壤通报, 2012, 43 (1): 76-80 [Wang HJ, Ning LM, Xu LX, Huang H, Du J. Vertical distribution characteristics of soil organic carbon content in an Alpine-cold Zone of northwest Sichuan [J]. Chin J Soil Sci, 2012, 43 (1): 76-80]
49. 曾全超, 李鑫, 董扬红, 安韶山. 黄土高原延河流域不同植被类型下土壤生态化学计量学特征[J]. 自然资源学报, 2016, 31 (11): 1881-1891 [Zeng QC, Li X, Dong YH, An SS. Ecological stoichiometry of soils in the Yanhe Watershed in the Loess Plateau: the influence of different vegetation zones [J]. J Nat Resour, 2016, 31 (11): 1881-1891]
50. 李金芬, 程积民, 刘伟, 古晓林. 黄土高原云雾山草地土壤有机碳、全氮分布特征[J]. 草地学报, 2010, 18 (5): 661-668 [Li JF, Cheng JM, Liu W, Gu XL. Distribution of soil organic carbon and total nitrogen of grassland in Yunwu Mountain of Loess Plateau [J]. Acta Agrestia Sin, 2010, 18 (5): 661-668]
51. 罗由林, 李启权, 王昌全, 辛志远, 王永豪, 宋安军, 万傲然, 唐科. 近30a川中丘陵区不同土地利用方式土壤碳氮磷生态化学计量特征变化[J]. 土壤, 2016, 48 (4): 726-733 [Luo YL, Li QQ, Wang CQ, Xin ZY, Wang YH, Song AJ, Wan AR, Tang K. Last 30a changes of C, N and P ecological stoichiometry of different land use types in hilly area of Mid-Sichuan Basin, Southwest China [J]. Soils, 2016, 48 (4): 726-733]
52. 曹广民, 张金霞, 鲍新奎, 周党卫. 高寒草甸生态系统磷素循环[J]. 生态学报, 1999, 19 (4): 514-518 [Cao GM, Zhang JX, Bao XK, Zhou DW. The phosphorus cycling in an Alpine Meadow Ecosystem [J]. Acta Ecol Sin, 1999, 19 (4): 514-518]
53. 金生英, 严林, 马玉寿, 陈生翠, 陈伶俐, 马洪福, 李琳琳. 三江源区人工草地中小型土壤动物群落特征及季节变化[J]. 草地学报, 2014, 22 (5): 954-960 [Jin SY, Yan L, Ma YS, Chen SC, Chen LL, Ma HF, Li LL. Seasonal dynamics of meso-micro soil fauna communities in the artificial grassland of Three-river Source Region in Qinghai, China [J]. Acta Agrestia Sin, 2014, 22 (5): 954-960]
54.

相似文献/References:

[1]王启兰,王长庭,刘伟,等.江河源区人工草地植物群落和土壤酶活性变化[J].应用与环境生物学报,2010,16(05):662.[doi:10.3724/SP.J.1145.2010.00662]
 WANG Qilan,WANG Changting,LIU Wei,et al.Changes in Plant Communities and Soil Enzyme Activities of Artificial Grasslands in Headwater Areas of the Yangtze and Yellow Rivers[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):662.[doi:10.3724/SP.J.1145.2010.00662]
[2]杨希智,王长庭,字洪标,等.三江源区不同建植年限人工草地土壤微生物群落结构特征[J].应用与环境生物学报,2015,21(02):341.[doi:10.3724/SP.J.1145.2014.10033]
 YANG Xizhi,WANG Changting,ZI Hongbiao,et al.Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers, China[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):341.[doi:10.3724/SP.J.1145.2014.10033]

更新日期/Last Update: 2019-02-25