1. Purugganan MD, Fuller DQ. The nature of selection during plant domestication [J]. Nature, 2009, 457 (7231): 843-848 2. van Bothmer R, Komatsuda T. Barley origin and related species [M]//Ullrich E. Barley: Production, Improvement, and Uses. Oxford: Wiley-Blackwell, 2010: 14-62 3. Zohary D, Hopf M, Weiss E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin [M]. Oxford: Oxford University, 2012 4. Harlan JR, Zohary D. Distribution of wild wheats and barley [J]. Science, 1966, 153 (3740): 1074-1080 5. Nevo E. "Evolution Canyon": a microcosm of life's evolution focusing on adaptation and speciation [J]. Isr J Ecol Evol, 2006, 52 (3): 501-506 6. Morrell PL, Clegg MT. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent [J]. PNAS, 2007, 104 (9): 3289-3294 7. Nevo E. Genome evolution of wild cereal diversity and prospects for crop improvement [J]. Plant Genet Resour-C, 2007, 4 (1): 36-46 8. Zohary D. Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East [J]. Isr J Ecol Evol, 1999, 46 (2): 133-142 9. Azhaguvel P, Komatsuda T. A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley [J]. Ann Bot, 2007, 100 (5): 1009-1015 10. Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G. Tibet is one of the centers of domestication of cultivated barley[J]. PNAS, 2012, 109 (42): 16969-16973 11. Dai F, Chen ZH, Wang X, LiZ, Jin G, Wu D, Cai S, Wang N, Wu F, Nevo E, Zhang G. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley[J]. PNAS, 2014, 111 (37): 13403-13408 12. Molina-Cano JL, Russell JR, Moralejo MA, Escacena JL, Arias G, Powell W. Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley [J]. Theor Appl Genet, 2005, 110 (4): 613-619 13. 马得泉, 戴先凯, 洛桑更堆, 干志峰. 西藏栽培大麦的分类研究[J]. 中国农业科学, 1992, 25 (3): 44-49 [Ma DQ, Dai XK, LSGD, GAN ZF. The research on classification of cultivated barley in Tibet autonomous region (continued) [J]. Sci Agric Sin, 1992, 25 (3): 44-49] 14. 徐廷文. 中国栽培大麦的起源与进化[J]. 遗传学报, 1982, 9 (6): 440-446 [Xu TW. Origin and evolution of cultivated barley in China [J]. Acta Genet Sin, 1982, 9 (6): 440-446] 15. 张亚生, 金涛, 尼玛扎西, 关卫星, 李宝海, 拉巴. 西藏高原地区麦作农业起源几个问题的探讨[J]. 西藏农业科技, 1999, 21 (4): 4-11 [Zhang YS, Jin T, NMZX, Guan WX, L BH, LB. Discussion on the origin of wheat in the Tibetan Plateau region [J]. Xizang Agric Sci Technol, 1999, 21 (4): 4-11] 16. 邵启全, 李长森, 巴桑次仁. 栽培大麦的起源与进化——我国西藏和川西的野生大麦[J]. 遗传学报, 1975, 2 (2): 123-128+181-182 [Shao QQ, Li CS, BACR. Origin and evolution of the cultivated barley-wild barleys from south western part of China [J]. Acta Genet Sin, 1975, 2 (2): 123-128+181-182] 17. 马得泉, 徐廷文. 西藏栽培大麦的分类和起源研究[J]. 中国农业科学, 1988, (5): 7-14 [Ma DQ, Xu TW. The research on classification and origin of cultivated barley in Tibet autonomous region [J]. Sci Agric Sin, 1988, 21 (5): 7-14] 18. Ren X, Nevo E, Sun D, Sun G. Tibet as a potential domestication center of cultivated barley of China [J]. PLoS ONE, 2013, 8 (5): e62700 19. van Bothmer R, Jacobsen N. Origin, Taxonomy, and Related Species [M]//Rasmusson DC. Barley. Madison, Wisconsin: American Society of Agronomy, 1985: 19-56 20. Zohary D, Hopf M, Domestication of Plants in the Old World [M]. 3rd ed. New York: Oxford University Press, 2000 21. Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WTB, Guo W, Zhang R, Rapazote-Flores P, Kyriakidis S, Russell J, Druka A, McKim SM, Waugh R. Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility [J]. Nat Commun, 2017, 8 (1): 936 22. Lundqvist U. Scandinavian mutation research in barley - a historical review [J]. Hereditas, 2014, 151 (6): 123-131 23. Esse GW, Walla A, Finke A, Koornneef M, Pecinka A, Korff M. Six-rowed spike3 (vrs3) is a histone demethylase that controls lateral spikelet development in barley [J]. Plant Physiol, 2017, 174 (4): 2397-2408 24. Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T. VRS2 regulates hormone-mediated inflorescence patterning in barley [J]. Nat Genet, 2017, 49 (1): 157-161 25. Lundqvist U, Franckowiak JD, Konishi T. New and revised descriptions of barley genes [J]. Barley Genetic Newsl, 1997, 26: 22-43 26. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene [J]. PNAS, 2007, 104 (4): 1424-1429 27. Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, Pourkheirandish M, Rutten T, Seiler C, Himmelbach A, Ariyadasa R, Youssef HM, Stein N, Sreenivasulu N, Komatsuda T, Schnurbusch T. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley [J]. PNAS, 2013, 110 (32): 13198-131203 28. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer G J, Waugh R. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 [J]. Nat Genet, 2011, 43 (2): 169-172 29. Youssef HM, Koppolu R, Schnurbusch T. Re-sequencing of vrs1 and int-c loci shows that labile barleys (Hordeum vulgare convar. labile) have a six-rowed genetic background [J]. Genet Resour Crop Evol, 2011, 59 (7): 1319-1328 30. Saisho D, Pourkheirandish M, Kanamori H, Matsumoto T, Komatsuda T. Allelic variation of row type gene Vrs1 in barley and implication of the functional divergence [J]. Breeding Sci, 2009, 59 (5): 621-628 31. Doyle J, Doyle J. Isolation of plant dna from fresh tissue [J]. Focus, 1990, 12: 13-15 32. Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of RAD Sequencing data: implications for genotyping [J]. Mol Ecol, 2013, 22 (11): 3151-3164 33. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform [J]. Appl Environ Microb, 2013, 79 (17): 5112-5120 34. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2010, 26 (5): 589-595 35. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data [J]. Genome Res, 2010, 20 (9): 1297-1303 36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25 (16): 2078-2079 37. Hill JT, Demarest, BL, Bisgrove, BW, Gorsi, B, Su, YC, Yost, H. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq [J]. Genome Res, 2013, 23 (4): 687-697 38. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations [J]. Plant J, 2013, 74 (1): 174-183 39. Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: genetic mapping and mutant identification without crossing in rice [J]. PLoS ONE, 2013, 8 (7): e68529 40. Altschul SF, Madden TL, Sch?ffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402 41. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25 (1): 25-29 42. Tatusov RL. The COG database: a tool for genome-scale analysis of protein functions and evolution [J]. Nucleic Acids Res, 2000, 28 (1): 33-36 43. Kanehisa M, Susumu G, Shuichi K, Yasushi O, Masahiro H. The KEGG resource for deciphering the genome [J]. Nucleic Acids Res, 2004, 32 : 277-288 44. Xia C, Chen Ll, Rong TZ, Li R, Xiang Y, Wang P, Liu CH, Dong XQ, Liu B, Zhao D, Wei RJ, Lan H. Identification of a new maize inflorescence meristem mutant and association analysis using SLAF-seq method [J]. Euphytica, 2014, 202 (1): 35-44 45. Han Y, Lv P, Hou S, Li S, Ji G, Ma X, Du R, Liu G. Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in sorghum (Sorghum bicolor L. Moench) [J]. PLoS ONE, 2015, 10 (5): 1-14 46. Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement [J]. Plant Biotechnol J, 2016, 14 (10): 1941-1955 47. Farkhari M, Krivanek A, Xu Y, Rong T, Naghavi MR, Samadi BY, Lu Y, Lübberstedt T. Root-lodging resistance in maize as an example for high-throughput genetic mapping via single nucleotide polymorphism-based selective genotyping [J]. Plant Breed, 2013, 132 (1): 90-98 48. Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M. Next generation genetic mapping of the Ligon-lintless-2 (Li2) locus in upland cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet, 2014, 127 (10): 2183-2192 49. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N. A physical, genetic and functional sequence assembly of the barley genome [J]. Nature, 2012, 491 (7426): 711-716 50. International Rice Genome Sequencing Project. The map-based sequence of the rice genome [J]. Nature, 2005, 436 (7052): 793-800 51. The Arabidopsis Genome Initiative Project. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408: 796-815 52.