|本期目录/Table of Contents|

[1]吴建召,陈爱民,崔羽,等.干热河谷常见植物地表形态特征与泥沙拦截的关系[J].应用与环境生物学报,2018,24(06):1236-1246.[doi:10.19675/j.cnki.1006-687x.2018.01024]
 WU Jianzhao,et al..The relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1236-1246.[doi:10.19675/j.cnki.1006-687x.2018.01024]
点击复制

干热河谷常见植物地表形态特征与泥沙拦截的关系
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1236-1246
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
The relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley
作者:
吴建召 陈爱民 崔羽 罗清虎 孙凡 严思维 林勇明 王道杰 吴承祯
1福建农林大学林学院 福州 350002 2福建省高校森林生态系统过程与经营重点实验室 福州 350002 3中国科学院水利部成都山地灾害与环境研究所 成都 610041 4武夷学院生态与资源工程学院 南平 354300
Author(s):
WU Jianzhao et al.
1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fuzhou 350002, China 3 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China 4 College of Ecology and Resources Engineering, Wuyi University, Nanping 354300, China
关键词:
干热河谷水槽试验泥沙拦截地表形态特征生长期植物物种
Keywords:
dry-hot valley flume experiment sediment trapping near-surface morphological trait growth period plant species
分类号:
Q948.11 : S157
DOI:
10.19675/j.cnki.1006-687x.2018.01024
摘要:
为探究植物的泥沙拦截能力及其与植物地表形态特征的关系,以金沙江干热河谷区6种典型植物[乔木:新银合欢(Leucaena leucocephala)、苦楝(Melia azedarach);灌木:坡柳(Dodonaea viscose)、马桑(Coriaria sinica);草本:扭黄茅(Heteropogon contortus)、拟金茅(Eulaliopsis binate)]为研究对象,进行水槽模拟试验. 结果表明:(1)在水槽模拟试验下,6种植物初生苗和1年生苗均表现出不同的泥沙拦截能力. 在初生苗期,马桑的泥沙拦截能力最强,扭黄茅和拟金茅最弱;在1年生期,马桑仍为泥沙拦截能力最强的植物,草本植物次之,乔木和坡柳最弱. (2)6种植物在初生和1年生时均表现出不同的地表茎形态特征、地表叶片形态特征、基部拦截体形态特征以及地上部分生物量的变化. (3)泥沙拦截量与植物贴地叶面积、基部最大冠长、基部最大冠宽、整体地上部分生物量和基部茎干物质密度呈极显著正相关,与茎-地面夹角呈极显著负相关,以上参数为影响植物泥沙拦截能力的主要地表形态特征因子. 此外,植物基部茎表皮裂隙数、基部茎干物质含量、贴地叶片干物质含量和基部单位体积生物量与泥沙拦截量也具有显著的相关性. 本研究认为该地区在采用植物措施治理水土流失和拦截泥沙时,应重点考虑上述植物关键形态因子以选取最优的植物种类. (图3 表7 参35)
Abstract:
To explore the sediment interception capacity of plants and its relationship with the surface morphological traits of plants, we used laboratory simulations and off-site flume experiments to study the ability for sediment retention of six familiar species: Leucaena leucocephala (LL), Melia azedarach (MA), Dodonaea viscosa (DV), Coriaria sinica (CS), Heteropogon contortus (HC), and Eulaliopsis binata (EB) aver two growth periods in the dry-hot river valley of the Jinsha River. We analyzed the relationship between near-surface morphological traits of individuals of six species and their ability for sediment retention. Our study resulted in three main observations. (1) In the flume experiment, three-month seedlings and one-year old seedlings of the six species showed different abilities for sediment retention. In the three-month seedlings, the ability for sediment retention of CS was the highest, followed by MA and LL, whereas it was the lowest in HC and EB. However, in one-year old seedlings, the ability for sediment retention of CS was the highest, but the ability for sediment retention of HC and EB was better than those of MA and LL. Hence, the ability for sediment retention of the six species fluctuated between different growth periods. (2) The three-month old and one-year old seedlings of all six species showed different near-surface morphological traits. (3) The sediment mass was significantly and positively correlated with near-surface leaf areas, crown lengths, crown widths, stem dry matter densities at the intersection volume, and above-ground biomass, but significantly and negatively correlated with the angle between stem and ground, indicating that these latter are the main near-surface morphological traits able to affect sediment retention. In addition, the sediment mass was also correlated (positively and negatively) with the stem epidermal crack number, stem dry matter content, leaf dry matter content at the intersection volume, and dry mass per unit volume of the intersection volume, which could also reflect the ability of sediment retention. We conclude that in the areas where plant measures are used to control soil erosion and intercept sediment, the key, above-mentioned plant morphological factors should be taken into account in order to select the optimal plant species.

参考文献/References:

1. 张信宝, 杨忠, 张建平. 元谋干热河谷坡地岩土类型与植被恢复分区[J]. 林业科学, 2003, 39 (4): 16-22 [Zhang XB, Yang Z, Zhang JP. Lithologic types on hill slopes and revegetation zoning in the Yuanmou hot and dry valley [J]. Sci Silv Sin, 2003, 39 (4): 16-22]
2. 崔鹏. 中国水土流失防治与生态安全——长江上游及西南诸河区卷[M]. 北京: 科学出版社, 2010: 213-223 [Cui P. Soil Erosion Control and Ecological Security in China: The Upper Reaches of the Yangtze River and the River Districts in Southwest China [M]. Beijing: Science Press, 2010: 213-223]
3. 潘久根. 金沙江流域的河流泥沙输移特性[J]. 泥沙研究, 1999 (2): 46-49 [Pan JG. Characteristics of sediment transportation in Jinsha River basin [J]. J Sed Res, 1999 (2): 46-49]
4. 殷大聪, 刘强, 桑连海. 长江上游水电开发生态环境制约的协调对策探讨[J]. 长江科学院院报, 2011, 28 (12): 43-47 [Yin DC, Liu Q, Sang LH. Coordination between hydropower exploitation and its eco-environmental restrictions in upper Yangtze River [J]. J Yangtze River Sci Res Inst, 2011, 28 (12): 43-47]
5. 杜秋成, 李克锋, 李密. 长江上游水电梯形开发对长江川境段航道的影响[J]. 四川大学学报(工程科学版), 2012, 44 (增刊2): 258-261 [Du QC, Li KF, Li M. Effect of cascade hydropower development in upper reaches of the Yangtze River on the river channel from Yibin to Chongqing [J]. J Sichuan Univ (Engin Sci Edit), 2012, 44 (Supp.2): 258-261]
6. Mekonnen M, Keesstra SD, Stroosnijder L, Baartman, JEM, Maroulis J. Soil conservation through sediment trapping: a review [J]. Land Degr Dev, 2015, 26 (6): 544-556
7. 王道杰, 崔鹏, 朱波, 王玉宽. 金沙江干热河谷植被恢复技术及生态效应——以云南小江流域为例[J]. 水土保持学报, 2004, 18 (5): 95-98 [Wang DJ, Cui P, Zhu B, Wang YK. Vegetation rehabilitation techniques and ecological effects in dry-hot valley of Jinsha River: a case study in Xiaojiang basin, Yannan province [J]. J Soil Water Convers, 2004, 18 (5): 95-98]
8. Descheemaeker K, Nyssen J, Rossi J, Poesen J, Haile M, Raes D, Muys B, Moeyersons J, Deckers S. Sediment deposition and pedogenesis in exclosures in the Tigray highlands, Ethiopia [J]. Geoderma, 2006, 132 (3-4): 291-314
9. 徐立宪, 马克明, 傅伯杰, 刘宪春, 黄勇, 祁建. 植被与水土流失关系研究进展[J]. 生态学报, 2006, 26 (9): 3138-3143 [Xu LX, Ma KM, Fu BJ, Liu XC, Huang Y, Qi J. Research review of the relationship between vegetation and soil loss [J]. Acta Ecol Sin, 2006, 26 (9): 3138-3143]
10. 李勇, 徐晓琴, 朱显谟, 田积莹. 植物根系与土壤抗冲性[J]. 水土保持学报, 1993 (3): 11-18 [Li Y, Xu XQ, Zhu XM, Tian JY. Plant roots and soil anti-scourability [J]. J Soil Water Convers, 1993 (3): 11-18]
11. 朱显谟. 黄土地区植被因素对于水土流失的影响[J]. 土壤学报, 1960 (2): 110-121 [Zhu XM. Impacts of vegetation factors on soil and water loss in loess areas [J]. Acta Pedol Sin, 1960 (2): 110-121]
12. 李强. 黄土丘陵区植物根系强化土壤抗冲性机理及固土效应[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2014 [Li Q. Mechanism of plant roots in improving resistance of soil to concentrated flow erosion and reinforcement in loess hilly region [D]. Beijing: Graduate University of Chinese Academy of Sciences (Research Center of Soil and Water & Eco-enviroment, Ministry of Education), 2014]
13. Rey F, Burylo M. Can bioengineering structures made of willow cuttings trap sediment in eroded marly gullies in a Mediterranean mountainous climate ?[J]. Geomorphology, 2014, 204 (1): 564-572
14. Cui P, Lin YM. Debris-flow treatment: the integration of botanical and geotechnical methods [J]. J Res Ecol, 2013, 4 (2): 97-104
15. 夏振尧, 周正军, 黄晓乐, 许文年. 植被护坡根系浅层固土与分形特征关系初步研究[J]. 岩石力学与工程学报, 2011, 30 (增刊2): 3641-3647 [Xia ZY, Zhou ZJ, Huang XL, Xu WN. Preliminary study of relationship between shallow soil reinforcement and fractal characteristics of vegetation roots in biotechnical slope protection [J]. Chin J Rock Mech Eng, 2011, 30 (Supp.2): 3641-3647]
16. 侯燕梅, 许文年, 夏振尧, 周正军. 向家坝水电站工程扰动边坡生态修复人工调控研究[J]. 中国水土保持, 2013 (9): 37-40 [Hou YM, Xu WN, Xia ZY, Zhou ZJ. Study on artificial control of ecological restoration of perturbed slope in Xiangjiaba hydropower project [J]. Soil Water Conser Chin, 2013 (9): 37-40]
17. Lin YM, Cui P, Ge YG, Chen C, Wang DJ, Wu CZ, Li J, Yu W, Zhang GS, Lin H. The succession characteristics of soil erosion during different vegetation succession stages in dry-hot river valley of Jinsha River, upper reaches of Yangtze River [J]. Ecol Eng, 2014, 62 (1): 13-26
18. 林勇明, 崔鹏, 葛永刚, 王道杰, 谢贤健. 泥石流频发区人工恢复新银合欢林种内竞争——以云南东川蒋家沟流域为例[J]. 北京林业大学学报, 2008, 30 (3):13-17 [Lin YM, Cui P, Ge YG, Wang DJ, Xie XJ. Intraspecificcompetition of Leucaena leucocephala plantation in the area of high frequency debris flow: taking the Jiangjiagou Gully as an example [J]. J Beijing For Univ, 2008, 30 (3):13-17]
19. Isselin-Nondedeu F, Bédécarrats A. Influence of alpine plants growing on steep slopes on sediment trapping and transport by runoff [J]. Catena, 2007, 71 (2): 330-339
20. Morgan RPC, Rickson RJ. Slope stabilization and erosion control: a bioengineering approach [J]. Soil Technol, 1995, 8 (1): 75-76
21. Burylo M, Dutoit T, Rey F. Species traits as practical tools for ecological restoration of marly eroded lands [J]. Restor Ecol, 2015, 22 (5): 633-640
22. 吴积善, 康志成, 田连权, 章书成. 云南蒋家沟泥石流观测研究[M]. 北京: 科学出版社, 1990: 238-239 [Wu JS, Kang ZC, Tian LQ, Zhang SC. Study on debris flow in Jiangjia Gully, Yunnan Province [M]. Beijing: Science Press, 1990: 238-239]
23. Burylo M, Rey F, Bochet E, Dutoit T. Plant functional traits and species ability for sediment retention during concentrated flow erosion [J]. Plant Soil, 2012, 353 (1): 135-144
24. Poesen J, Luna ED, Franca A, Nachtergaele J, Govers G. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content [J]. Catena, 1999, 36 (4): 315-329
25. 郭玉华, 朱四光, 张龙步. 不同栽培条件对水稻茎秆生化成分的影响[J]. 沈阳农业大学学报, 2003, 34 (2): 89-91 [Guo YH, Zhu SG, Zhang LB. Influence of different cultivation conditions on biochemistry components of rice culms [J]. J Shenyang Agric Univ, 2003, 34 (2): 89-91]
26. 王巧利. 黄土丘陵沟壑区植物抵抗土壤侵蚀的机械特性[D]. 杨凌: 西北农林科技大学, 2013 [Wang QL. Mechanical properties of plant resistance to soil erosion in the hilly and gully regions of the Loess Plateau [D]. Yangling: J Northwest A&F University, 2013]
27. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden MGA, Pausas JG, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Aus J Bot, 2003, 51: 335-380
28. Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, Mcintyre S, Pérez-Harguindeguy JGPN, Roumet C, Urcelay C. Plant functional types: are we getting any closer to the holy grail? [M]//Josep GC, Diane EP, Louis FP. Terrestrial Ecosystems in a Changing World. Berlin, Heidelberg: Springer, , 2007: 149-164
29. Abu-Zreig M, Rudra RP, Lalonde MN, Whiteley HR, Kaushik NK. Experimental investigation of runoff reduction and sediment removal by vegetated filter strips [J]. Hydr Proc, 2004, 18 (11): 2029-2037
30. 王进. 几种沙生植物耐沙埋的生理生态学机制研究[D]. 烟台: 鲁东大学, 2012 [Wang J. Physiological and ecological mechanism of several sand plant species against sand burial [D]. Yantai: Ludong University, 2012]
31. Meyer LD, Dabney SM, Harmon WC. Sediment-trapping effectiveness of stiff-grass hedges [J]. Tran ASAE, 1995, 38 (3): 809-815
32. Dalton PA, Smith RJ, Truong PNV. Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulics [J]. Agric Water Manage, 1996, 31 (1-2): 91-104
33. Erktan A, Rey F. Linking sediment trapping efficiency with morphological traits of salix tiller barriers on marly gully floors under ecological rehabilitation [J]. Ecol Eng, 2013, 51: 212-220
34. Bochet E, Poesen J, Rubio JL. Mound development as an interaction of individual plants with soil, water erosion and sedimentation processes on slopes [J]. Earth Surf Proc Landf, 2000, 25: 847-867
35. Valentin C, D’Herbès JM, Poesen J. Soil and water components of banded vegetation patterns [J]. Catena, 1999, 37 (1): 1-24
36.

相似文献/References:

[1]张信宝,陈玉德.云南元谋干热河谷区不同岩土类型荒山植被恢复研究[J].应用与环境生物学报,1997,3(01):13.
 Zhang Xinbao,Chen Yude.STUDY ON VEGETATION REHABILITATION ON THE SLOPES OF THE ARID AND HOT VALLEYS IN YUANMOU, YUNNAN[J].Chinese Journal of Applied & Environmental Biology,1997,3(06):13.
[2]刘方炎,朱华,施济普,等.元江干热河谷植物群落特征及土壤肥力研究[J].应用与环境生物学报,2007,13(06):782.
 LIU Fangyan,et al..Characteristics of Plant Communities and Their Soil Fertilities in Dryhot Valley of Yuanjiang County, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2007,13(06):782.
[3]罗增斌,刁阳光,杨利民,等.凉山州金沙江干热河谷麻疯树群落结构[J].应用与环境生物学报,2009,15(03):432.[doi:10.3724/SP.J.1145.2009.00432]
 LUO Zengbin,DIAO Yangguang,YANG Limin,et al.Community Structure of Jatropha curcas in the Jinsha River Dry-hot Valley in Liangshan Prefecture, Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):432.[doi:10.3724/SP.J.1145.2009.00432]
[4]刘方炎,张志翔,王小庆,等.生境异质性对金沙江干热河谷锥连栎天然更新幼苗早期生长的影响[J].应用与环境生物学报,2011,17(03):338.[doi:10.3724/SP.J.1145.2011.00338]
 LIU Fangyan,ZHANG Zhixiang,WANG Xiaoqing,et al.Effects of Habitat Heterogeneity on Early Growth of Quercus franchetii Natural Regeneration Seedlings in the Jinsha River Dry-hot Valley[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):338.[doi:10.3724/SP.J.1145.2011.00338]
[5]赵高卷,马焕成,胡世俊,等.紫茎泽兰对木棉种子萌发和幼苗光合特性的影响[J].应用与环境生物学报,2014,20(04):683.[doi:10.3724/SP.J.1145.2014.01014]
 ZHAO Gaojuan,MA Huancheng,HU Shijun,et al.Impacts of Eupatorium adenophorum on seed germination and seedling photosynthetic characters of Bombax ceiba L.[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):683.[doi:10.3724/SP.J.1145.2014.01014]
[6]邓浩俊,陈爱民,严思维,等.不同林龄新银合欢重吸收率及其C:N:P化学计量特征[J].应用与环境生物学报,2015,21(03):522.[doi:10.3724/SP.J.1145.2014.11032]
 DENG Haojun,CHEN Aimin,YAN Siwei,et al.Nutrient resorption efficiency and C:N:P stoichiometry in different ages of Leucaena leucocephala[J].Chinese Journal of Applied & Environmental Biology,2015,21(06):522.[doi:10.3724/SP.J.1145.2014.11032]

更新日期/Last Update: 2018-12-25