|本期目录/Table of Contents|

[1]顾敏芬,何畅,黄玉彪,等.扫描/透射电子显微技术在土壤环境与微生物互作研究中的应用进展[J].应用与环境生物学报,2018,24(05):978-984.[doi:10.19675/j.cnki.1006-687x.2017.11027]
 GU Minfen,HE Chang,HUANG Yubiao,et al.Application of scanning electron microscopy and transmission electron microscopy for studying ultrastructural interactions between the soil and microorganisms[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):978-984.[doi:10.19675/j.cnki.1006-687x.2017.11027]
点击复制

扫描/透射电子显微技术在土壤环境与微生物互作研究中的应用进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
978-984
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
Application of scanning electron microscopy and transmission electron microscopy for studying ultrastructural interactions between the soil and microorganisms
作者:
顾敏芬何畅黄玉彪黄鹤勇孟祥天王芳蒋新张银萍
1南京师范大学分析测试中心 南京 2100432中国科学院南京土壤研究所 南京 210009
Author(s):
GU Minfen1 HE Chang1 HUANG Yubiao1 HUANG Heyong1 MENG Xiangtian1 WANG Fang2 JIANG Xin2 & ZHANG Yinping1**
1 Analysis and Testing Center, Nanjing Normal University, Nanjing 210043, China2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210009, China
关键词:
微球菌分枝杆菌扫描电镜透射电镜土壤界面
Keywords:
Micrococcus sp. Mycobacterium sp. scanning electron microscopy (SEM) transmission electron microscopy (TEM) soil interface
分类号:
S154.36 : Q93-33
DOI:
10.19675/j.cnki.1006-687x.2017.11027
摘要:
超微结构技术与土壤和微生物等学科的交叉融合,使得相关研究的尺度向着更直观与更微观的两极方向延伸. 微生物与土壤组分的相互作用贯穿于整个土壤多相微界面体系,是土壤中最具活力的因子,深刻影响着环境污染物的迁移转化及归趋行为. 扫描和透射电子显微技术的结合能够将土壤与微生物组成的高活性超微界面体系可视化,是当今土壤界面化学研究的前沿方向. 介绍扫描和透射电子显微技术结合能谱、高角度环形暗场像、电子衍射分析等手段的基本原理和其应用于环境微生物领域的制样要求;综述应用扫描/透射电子显微技术研究环境胁迫下微生物的形态变化特征、微生物与土壤固相组分的作用、微生物与微生物之间交互作用的超微结构特征,以及结构和形貌观测及化学成分分析;通过扫描/透射电子显微技术揭示土壤微生物与污染物的作用机制,跟踪环境污染物的转化和迁移特征. 已开展的研究发现,微生物容易附生于土壤颗粒表面,且通过调整自身细胞表面结构,改变自身转运有机物的通道,从而代谢污染物;共培养模式具有协同效应,在降解有毒有机污染物和处理废弃物方面效率更高,从而加速土壤中污染物的转化与降解过程. 此外,还总结了通过扫描/透射电子显微技术如何深入挖掘有生命土壤的超微界面作用机理,展望扫描/透射电子显微技术未来的可能研究方向,期望能进一步促进土壤微生物技术在环境修复领域的深入发展与广泛应用. (图3 参58)
Abstract:
The combination of ultrastructural technology and other disciplines should favor the development of soil science and microbiology in more intuitive and microscopic directions. Interactions between the soil and microorganisms occur all over the soil interface, which strongly affects the transportation of environmental pollutants. In this study, the importance of micro-area analysis was carefully elucidated for the ultrastructural study of the interfaces between soil and microorganisms. The methods for sample preparation were also briefly introduced for use in the visualization of ultrastructural features by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with energy dispersive X-ray analyses (EDX), high-angle annular dark-field (HAADF), and electron diffraction (ED) analysis. These techniques were further employed to observe bacterial morphology and its intracellular organization, determine the nature of interactions between bacteria and soil components at their interfaces, detect their composition, and study the interactions between bacteria and environmental pollutants under environmental stress. Corresponding studies revealed that bacteria easily attach to the surfaces of soil particles, accelerating the biodegradation and biotransformation of pollutants by adjusting their cell surface properties. Furthermore, previously published research showed that the co-culture of different bacteria favored the biodegradation process, which would be helpful for elucidating the ultrastructural mechanisms at micro-interfaces while tracking trends in the transfer of environmental pollutants. In conclusion, the application of SEM and TEM should favor the development and application of bioremediation technology for contaminated soils and sediments.

参考文献/References:

1 荣兴民, 黄巧云, 陈雯莉, 梁巍. 土壤矿物与微生物相互作用的机理及其环境效应[J]. 生态学报, 2008, 28 (1): 376-387 [Rong XM, Huang QY, Chen WL, Liang W. Interaction mechanisms of soil minerals with microorganisms and their environmental significance [J]. Acta Ecol Sin, 2008, 28 (1): 376-387]
2 Redmile-Gordon MA, Brookes PC, Evershed RP, Goulding KWT, Hirsch PR. Measuring the soil-microbial interface: extraction of extracellular polymeric substances (EPS) from soil biofilms [J]. Soil Biol Biochem, 2014, 72 (6): 163-171
3 Edwards JK, Bach W, McCollom MT, Rogers RD. Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea [J]. Geomicrobiol J, 2004, 21 (6): 393-404
4 Southam G. Minerals as substrates for life: the prokaryotic view [J]. Elements, 2012, 8 (2): 101-106
5 Ferris FG. Biogeochemical properties of bacteriogenic iron oxides [J]. Geomicrobiol J, 2005, 22 (3-4): 79-85
6 Mcswain BS, Irvine RL, Hausner M, Wilderer PA. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Appl Environ Microbiol, 2005, 71 (2): 1051-1057
7 王文斌, 祁佩时. 电子显微技术研究生物膜特性[J]. 工业安全与环保, 2008, 34 (7): 15-16 [Wang WB, Qi PS. Application of electron microscopy in the biofilm’s characteristic analysis [J]. Ind Saf Environ Prot, 2008, 34 (7): 15-16]
8 周广荣. 扫描电镜图像最优条件的选择研究[J]. 电子显微学报, 2011, 30 (2): 171-174 [Zhou GR. Selection to determine the optimal experimental condition of scanning electron microscope [J]. J Chin Electr Micros Soc, 2011, 30 (2): 171-174]
9 Sugimoto S, Okuda K, Miyakawa R, Sato M, Arita-morioka K, Chiba A, Yamanaka K, Ogura T, Mizunoe Y, Sato C. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy [J]. Sci Rep, 2016, 6: 1-13
10 李斗星. 透射电子显微学的新进展Ⅰ: 透射电子显微镜及相关部件的发展及应用[J]. 电子显微学报, 2004, 23 (3): 269-277 [Li DX. Progress of transmission electron microscopyⅠ: development of transmission electronmicroscope and related equipments [J]. J Chin Electr Microscopy Soc, 2004, 23 (3): 269-277]
11 Zuo JM, Spence JCH. Advanced Transmission Electron Microscopy [M]. New York: Springer, 2017
12 Elsass F, Chenu C, Tessier D. Transmission electron microscopy for soil samples: preparation methods and use [J]. Dl Sci Soc Org, 2007, 9: 235-268
13 Vos K, Vandenberghe N, Elsen J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): from sample preparation to environmental interpretation [J]. Earth Sci Rev, 2014, 128 (1): 93-104
14 Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D. Sample preparation handbook for transmission electron microscopy [J]. Springer Berlin, 2013, 39 (1): 128-130
15 Sharma J, Shamim K, Dubey SK, Meena RM. Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicolastrain SJ2A [J]. Sci Total Environ, 2017, 579: 359-365
16 Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. Potential use of pseudomonas koreensis AGB-1 in association with miscanthussinensis to remediate heavy metal (loid)-contaminated mining site soil [J]. J Environ Manage, 2015, 151: 160-166
17 Huang F, Guo CL, Lu GN, Yi XY, Zhu LD, Dang Z. Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism [J]. Chemosphere, 2014, 109 (6): 134-142
18 Rehan M, Furnholm T, Finethy RH, Chu F, El-Fadly G, Tisa LS. Copper tolerance in Frankia sp. strain Eul1c involves surface binding and copper transport [J]. Appl Microbiol Biotechnol, 2014, 98 (18): 8005-8015
19 张勇, 龚小宝, 孙飞. Cr (Ⅵ)吸附菌的分离及其对Cr (Ⅵ)吸附的研究[J]. 环境科学与技术, 2011, 34 (7): 105-109 [Zhang Y, Gong XB, Sun F. Cr(Ⅵ)absorption bacteria: screening and Cr(Ⅵ)adsorption [J]. Environ Sci Technol, 2011, 34 (7): 105-109]
20 杨诗琴, 郝瑞霞, 吴沣, 姜源. 德兴铜矿地区土壤微生物的分布特征研究[J]. 北京大学学报(自然科学版), 2016, 52 (2): 287-294 [Yang SQ, Hao RX, Wu F, Jiang Y. Characteristics of distribution of soil microorganisms in Dexing Copper Ore Deposit [J]. Acta Sci Nat Univ Peking, 2016, 52 (2): 287-294]
21 Chouhan RS, Qureshi A, Yagci B, Gülgün MA, Ozguz V, Niazi JH. Biotransformation of multi-walled carbon nanotubes mediated by nanomaterial resistant soil bacteria [J]. Chem Eng J, 2016, 298: 1-9
22 Salam JA, Das N. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment [J]. Appl Microbiol Biotechnol, 2015, 99 (5): 2351-2360
23 Xie Y, Gu Z, Herath HMSK, Gu M, He C, Wang F, Jiang X, Zhang J, Zhang YP. Evaluation of bacterial biodegradation and accumulation of phenanthrene in the presence of humic acid [J]. Chemosphere, 2017, 184: 482-488
24 吴蔓莉, 袁婧, 李炜, 时艺馨, 王玺. 石油污染土壤的微生物修复及土壤微生物活性变化[J]. 应用与环境生物学报, 2016, 22 (5): 878-883 [Wu ML, Yuan J, Li W, Shi YX, Wang X. Bioremediation of petroleum contaminated soil and activity of hydrocarbon degrading bacteria [J]. Chin J Appl Environ Biol, 2016, 22 (5): 878-883]
25 Patowary K, Patowary R, Kalita MC, Deka S. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon [J]. Front Microbiol, 2017, 8 (279): 1-14
26 Biswas B, Chakraborty A, Sarkar B, Naidu R. Structural changes in smectite due to interaction with a biosurfactant-producing bacterium pseudoxanthomonas kaohsiungensis [J]. Appl Clay Sci, 2017, 136: 51-57
27 Du H, Chen W, Cai P, Rong X, Feng X, Huang Q. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite [J]. Environ Pollut, 2016, 218: 168-175
28 Zhang H, Olson MS. Effect of heavy metals on bacterial attachment in soils [J]. J Environ Eng, 2012, 138 (11): 1106-1113
29 Cai P, Zhu J, Huang Q, Fang L, Liang W, Chen W. Role of bacteria in the adsorption and binding of DNA on soil colloids and minerals [J]. Colloids Surf B, 2009, 69 (1): 26-30
30 Perdrial N, Liewig N, Delphin JE, Elsass F. Tem evidence for intracellular accumulation of lead by bacteria in subsurface environments [J]. Chem Geol, 2008, 253 (3-4): 196-204
31 Ranville JF, Chittleborough DJ, Beckett R. Particle-size and element distributions of soil colloids [J]. Soil Sci Soc Am J, 2005, 69 (4): 1173-1184
32 贾丽萍, 李为, 朱敏, 贺秋芳, 刘彦, 余龙江. 典型细菌、真菌、放线菌对石灰岩动态溶蚀效果比较[J]. 应用与环境生物学报, 2007, 13 (1): 126-130 [Jia LP, Li W, Zhu M, He QF, Liu Y, Yu LJ. Dynamic corrosion effect of different microbes on limestone [J]. Chin J Appl Environ Biol, 2007, 13 (1): 126-130]
33 李波, 罗学刚, 唐永金, 何秀红, 贾文甫. 土壤优势细菌菌群对膨润土的腐蚀影响[J]. 安全与环境学报, 2016, 16 (2): 199-204 [Li B, Luo XG, Tang YJ, He XH, Jia WP. On the impact of the dominant bacteria community in the soil on the bentonite corrosion [J]. J Saf Environ, 2016, 16 (2): 199-204]
34 Perdrial JN, Warr LN, Perdrial N, Lett MC, Elsass F. Interaction between smectite and bacteria: implications for bentonite as backfill material in the disposal of nuclear waste [J]. Chem Geol, 2009, 264 (1): 281-294
35 Muehe EM, Adaktylou IJ, Obst M, Zeitvogel F, Behrens S, Planer-Friedrich B, Kraemer U, Kappler A. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-Neutral soil [J]. Environ Sci Technol, 2013, 47 (23): 13430-13439
36 Seabaugh JL, Dong H, Kukkadapu RK, Eberl DD, Morton JP, Kim J. Microbial reduction of Fe (III) in the fithian and muloorinaillites: contrasting extents and rates of bioreduction [J]. Clays Clay Min, 2006, 54 (1): 67-79
37 Pantke C, Obst M, Benzerara K, Morin G, Ona-Nguema G, Dippon U, Kappler A. Green rust formation during Fe (II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 [J]. Environ Sci Technol, 2012, 46 (3): 1439-1446
38 Zhang YP, Wang F, Wang CY, Hong Q, Kengara FO, Wang T, Song Y, Jiang X. Enhanced microbial degradation of humin-bound phenanthrene in a two-liquid-phase system [J]. J Haz Mat, 2011, 186 (2-3): 1830-1836
39 王莹, 刘同旭, 李芳柏. 微生物-矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31 (4): 347-356 [Wang Y, Liu TX, Li FB. Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral interface [J]. Adv Earth Sci, 2016, 31 (4): 347-356]
40 Spence A, Robinson C, Hanson RE. The effects of micro-structural changes on montmorillonite–microbial interactions [J]. J Mol Struct, 2014, 1056/1057 (1): 157-165
41 黄智, 何琳燕, 黄静, 王琪, 盛下放. 硅酸盐矿物分解细菌Bacillus globisporus Q12与云母矿物相互作用的研究[J]. 矿物岩石地球化学通报, 2011, 30 (3): 286-291 [Huang Z, He LY, Huang J, Wang Q, Sheng XF. Interaction between silicate-dissolving Bacillus globisporus Q12 and mica minerals[J]. Bull Mineral Petr Geochem, 2011, 30 (3): 286-291]
42 倪红, 熊哲, 张珊, 曾思泉, 李林. 多孔陶粒固定化微生物效果及扫描电镜观察[J]. 湖北大学学报(自科版), 2011, 33 (2): 182-186 [Ni H, Xiong Z, Zhang S, Zeng SQ, Li L. Effect of porous ceramic on the immobilized microorganisms and scanning electron microscopy [J]. J Hubei Univ (Nat Sci), 2011, 33 (2): 182-186]
43 Akbari A, Rahim AA, Ehrlicher AJ, Ghoshal S. Growth and attachment-facilitated entry of bacteria into sub-micron pores can enhance bioremediation and oil recovery in low permeability and microporous media [J]. Environ Sci Technol Lett, 2016, 3 (11): 399-403
44 李婧, 党志, 郭楚玲, 卢桂宁, 卢静. 复合固定化法固定微生物去除芘[J]. 环境化学, 2012, 31 (7): 1036-1042 [Li J, Dang Z, Guo CL, Lu GN, Lu J. Removal of pyrene using immobilized microorganism [J]. Environ Chem, 2012, 31 (7): 1036-1042]
45 Zhang YP, Wang F, Zhu XS, Zeng J, Zhao QG, Jiang X. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation [J]. Bioresour Technol, 2015, 193 (1): 274-280
46 Keskin NOS, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T. Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web [J]. Rsc Adv, 2015, 5 (106): 86867-86874
47 Zhang YP, Wang F, Yang XG, Gu CG, Kengara FO, Hong Q, Lü ZY, Jiang X. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation [J]. Appl Microbiol Biotechnol, 2011, 90 (3): 1063-1071
48 Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, Dijksterhuis J, Brakhage AA, Kuipers OP, de Vries RP, Kovács?T. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism [J]. Environ Microbiol, 2015, 17 (6): 2099-2113
49 Fowler SJ, Toth CRA, Gieg L M. Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments [J]. Front Microbiol, 2016, 7 (562): 1-13
50 Gebreil AS, Abraham WR. Diversity and activity of bacterial biofilm communities growing on hexachlorocyclohexane [J]. Water Air Soil Pollut, 2016, 227 (9): 1-12
51 Lu H, Ng SK, Jia Y, Cai M, Lee PKH. Physiological and molecular characterizations of the interactions in two cellulose-to-methane cocultures [J]. Biotechnolo Biof, 2017, 10 (1): 37
52 Granillo AR, Canales MGM, Espindola MES, Rivera MAM, Lucio VMBD, Tovar AVR. Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation [J]. BMC Microbiol, 2015, 15 (1): 1-15
53 徐德阳, 王莉莉, 杜春梅. 微生物共培养技术的研究进展[J]. 微生物学报, 2015, 55 (9): 1089-1096 [Xu DY, Wang LL, Du CM. Progress in microbial co-culture - a review [J]. Acta Microbiol Sin, 2015, 55 (9): 1089-1096]
54 Kean R, Rajendran R, Haggarty J, Townsend EM, Short B, Burgess KE, Lang S, Millington O, Mackay WG, Williams C, Ramage G. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions [J]. Front Microbiol, 2017, 8 (258): 1-11
55 Zhang YP, Wang F, Wei HJ, Wu ZG, Zhao QG, Jiang X. Enhanced biodegradation of poorly available polycyclic aromatic hydrocarbons by easily available one [J]. Int Biodeterior Biodegrad, 2013, 84 (5): 72-78
56 Gu H, Lou J, Wang H, Yang Y, Wu L, Wu J, Xu J. Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and phanerochaetechrysosporium [J]. Front Microbiol, 2016, 7 (38): 1-12
57 Furuno S, P?zolt K, Rabe C, Neu TR, Harms H, Wick LY. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems [J]. Environ Microbiol, 2010, 12 (6): 1391-1398
58 Gu H, Chen Y, Liu X, Wang H, Shen TJ, Wu L, Zeng L, Xu J. The effective migration of Massilia sp. wf1 by Phanerochaete chrysosporium and its phenanthrene biodegradation in soil [J]. Sci Total Environ, 2017, 593/594: 695-703

相似文献/References:

[1]杨亚力,杨顺楷,吴中柳.偶发分枝杆菌发酵断甾醇侧链积累9α-羟基雄烯二酮[J].应用与环境生物学报,2015,21(02):256.[doi:10.3724/SP.J.1145.2014.07022]
 YANG Yali,YANG Shunkai,WU Zhongliu.Development of 9α-hydroxy-androst-4-ene-3,17-dione (9α-OH-AD) through cleaving sterol sidechain by fermentation of Mycobacterium fortuitum[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):256.[doi:10.3724/SP.J.1145.2014.07022]
[2]宋宇迪,董玉秀,马新宇,等.降解植物甾醇为甾体9α-OH-AD菌株的筛选与鉴定[J].应用与环境生物学报,2017,23(06):1022.[doi:10.3724/SP.J.1145.2017.01011]
 SONG Yudi,DONG Yuxiu,MA Xinyu,et al.Screening and identification of a strain degrading phytosterols to 9α-hydroxyandrost-4-ene-3,17-dione[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1022.[doi:10.3724/SP.J.1145.2017.01011]

更新日期/Last Update: 2018-10-25