|本期目录/Table of Contents|

[1]周婷,余林鹏,符力,等.微生物直接电子传递:甲烷代谢古菌研究进展[J].应用与环境生物学报,2018,24(05):1032-1040.[doi:10.19675/j.cnki.1006-687x.2017.11017]
 ZHOU Ting,YU Linpeng,FU Li** & ZHOU Shungui.Microbial direct electron transfer: advances in its study in the metabolism of methane by Archaea[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1032-1040.[doi:10.19675/j.cnki.1006-687x.2017.11017]
点击复制

微生物直接电子传递:甲烷代谢古菌研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1032-1040
栏目:
综述
出版日期:
2018-10-25

文章信息/Info

Title:
Microbial direct electron transfer: advances in its study in the metabolism of methane by Archaea
作者:
周婷余林鹏符力周顺桂
福建农林大学资源与环境学院 福州 350002
Author(s):
ZHOU Ting YU Linpeng FU Li** & ZHOU Shungui
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
直接电子传递互营产甲烷电能无机自养产甲烷厌氧甲烷氧化
Keywords:
direct electron transfer (DET) syntrophic methanogenesis electromethanogenesis anaerobic methane oxidation
分类号:
Q939.9
DOI:
10.19675/j.cnki.1006-687x.2017.11017
摘要:
甲烷是重要的温室气体,同时也是广泛的可再生能源. 深刻认识甲烷代谢过程中的微观机理可为人类实现甲烷的减排及其作为能源的合理利用打下坚实的理论基础. 古菌介导的直接电子传递(DET)作为甲烷代谢的重要途径,已成为近年来环境微生物领域的研究热点. 本文对互营氧化产甲烷、电能无机自养产甲烷以及厌氧甲烷氧化3个过程中参与DET的微生物进行综述,并着重阐述它们各自的发生机理. DET既存在于甲烷合成代谢,又涉及厌氧甲烷氧化. 前者根据电子来源的不同,可分为微生物种间DET产甲烷和电能无机自养产甲烷两种类型. 后者则是甲烷氧化古菌将甲烷氧化产生的电子传递至胞外电子受体. 在甲烷合成代谢过程中,产甲烷古菌主要通过互营细菌外膜细胞色素蛋白、菌毛或导电性固体3种方式进行电子的直接吸收. 相反,甲烷氧化古菌可通过外膜细胞色素蛋白将电子传递至胞外固体或微生物. 今后对于古菌介导的DET研究将集中在甲烷代谢电子传递链的各个组成部分及其与细菌之间的相互作用,以便将DET机制用于实际问题的解决. (图5 表1 参93)
Abstract:
Methane is an important greenhouse gas, and also a widespread source of renewable energy. An improved understanding of the mechanisms of methane metabolism by microbes can lay a solid theoretical foundation for the realization of reduced methane emissions and the more rational utilization of this energy source. Direct electron transfer (DET), mediated by Archaea, is an important pathway involved in methane metabolism, and in recent years it has become a research hotspot in the field of environmental microbiology. In?this?study,?the microorganisms involved in DET during the processes of syntrophic methanogenesis, electromethanogenesis, and anaerobic methane oxidation were?briefly?reviewed,?and their respective mechanisms of doing so were described in detail. DET has been demonstrated to be involved in both methanogenesis and anaerobic oxidation of methane. The former can be classified into two categories according to the electron sources used, which are syntrophic methanogenesis and electromethanogenesis, whereas in the latter process methane is oxidized with electrons transferred from Archaea to an extracellular electron receptor. During the process of methanogenesis, methanogenic Archaea can directly accept extracellular electrons via cytochrome proteins, pili of a partner bacterium, or conductive solids. In contrast, methanotrophic Archaea use cytochrome proteins in their outer membrane to donate electrons to extracellular solids or microbes. For the DET mechanism to be applied to solve practical problems, future studies on Archaea-mediated DET should focus on the components of the electron transport chain of methane metabolism and its interactions with bacteria.

参考文献/References:

1. 张小元, 李香真, 李家宝. 微生物互营产甲烷研究进展[J]. 应用与环境生物学报, 2016, 22 (1): 156-166 [Zhang XY, Li XZ, Li JP. Microbial syntrophic methanogenesis: a review [J]. Chin J Appl Environ Biol, 2016, 22 (1): 156-166]
2. Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese [J]. Appl Environ Microbiol, 1988, 54 (6): 1472-1480
3. Myers CR, Nealson KH. Microbial reduction of manganese oxides: interactions with iron and sulfur [J]. Geochim Cosmochim Acta, 1988, 52 (11): 2727-2732
4. Ishii T, Kawaichi S, Nakagawa H, Hashimoto K, Nakamura R. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe (II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources [J]. Front Microb, 2015, 6: 994-1002
5. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Balaguer MD, Colprim J. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode [J]. Rsc Adv, 2015, 5 (64): 52243-52251
6. Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis [J]. Environ Sci Technol, 2015, 49 (2): 1225-1232
7. Beese-Vasbender PF, Grote JP, Garrelfs J, Stratmann M, Mayrhofer KJ. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon [J]. Bioelectrochem, 2015, 102: 50-55
8. Zeppilli M, Villano M, Aulenta F, Lampis S, Vallini G, Majone M. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell [J]. Environ Sci Pollut Res Int, 2015, 22 (10): 7349-7360
9. Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevina KP, Lovley DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energ Environ Sci, 2014, 7 (1): 408-415
10. Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol Mol Biol Rev, 1997, 61 (2): 262-280
11. 刘鹏飞, 陆雅海. 水稻土中脂肪酸互营氧化的研究进展[J]. 微生物学通报, 2013, 40 (1): 109-122 [Liu PF, Lu YH. A review of syntrophic fatty acids oxidation in anoxic paddy soil [J]. Microbiol China, 2013, 40 (1): 109-122
12. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. PNAS, 2006, 103 (30): 11358-11363
13. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates [J]. mBio, 2011, 2 (4): e00159-11
14. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330 (6009): 1413-1415
15. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435 (7045): 1098-1101
16. Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR. Tunable metallic-like conductivity in microbial nanowire networks [J]. Nat Nanotechnol, 2011, 6 (9): 573-579
17. Rotaru AE, Shrestha PM, Liu FH, Markovaite B, Chen S, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri [J]. Appl Environ Microb, 2014, 80 (15): 4599-4605
18. Lovley DR. Syntrophy goes electric: direct interspecies electron transfer [J]. Annu Rev of Microbiol, 2017, 71 (1): 643-664
19. Nakamura R, Kai F, Okamoto A, Newton GJ, Hashimoto K. Self-constructed electrically conductive bacterial networks [J]. Anie, 2009, 48 (3): 508-511
20. Kato S, Nakamura R, Kai F, Watanabe K, Hashimoto K. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals [J]. Environ Microbiol, 2010, 12 (12): 3114-3123
21. Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide inerals [J]. Environ Microbiol, 2012, 14 (7): 1646-1654
22. Li HJ , Chang JL, Liu PF, Fu L, Ding D, Lu Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments: syntrophic butyrate oxidation facilitated by nanoFe3O4 [J]. Environ Microbiol, 2015, 17 (5): 1533-1547
23. Ye J, Hu AD, Ren GP, Zhou T, Zhang GM, Zhou SG. Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity [J]. Bioresour Technol, 2017, 247: 131-137
24. Zhang S, Chang J, Lin C, Pan Y, Cui K, Zhang X, Liang P, Huang X. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon [J]. Bioresour Technol, 2017, 245 (Pt A): 132-137
25. Lee JY, Lee SH, Park HD. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors [J]. Bioresour Technol, 2016, 205: 205-212
26. Xu SY, He CQ, Luo LW, Lü F, He PJ, Cui LF. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester [J]. Bioresour Technol, 2015, 196: 606-612
27. Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate [J]. J Biosci Bioeng, 2014, 119 (6): 678-682
28. Baek G, Kim J, Cho K, Bae H, Lee C. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation [J]. Appl Microbiol Biotechnol, 2015, 99 (23): 10355-10366
29. Cruz VC, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles trigger a faster and more robust syntrophic pathway of methanogenic propionate degradation [J]. Environ Sci Technol, 2014, 48 (13): 7536-7543
30. Chen SS, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, Fan W, Nevin KP, Lovley DR. Promoting interspecies electron transfer with biochar [J]. Sci Rep, 2014, 4 (5019): 163-168
31. Chen SS, Rotaru AE, Liu FH, Philips J, Woodard TL, Nevin KP, Lovley DR. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures [J]. Bioresour Technol, 2014, 173: 82-86
32. Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427 (6977): 829-832
33. Zhao ZQ, Zhang YB, Holmes DE, Dang Y, Woodard TL, Nevin KP, Lovley DR. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors [J]. Bioresour Technol, 2016, 209: 148-156
34. Zhuang L, Tang J, Wang Y, Hu M, Zhou S. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation [J]. J hazmat, 2015, 293: 37-45
35. Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD. Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion [J]. Bioresour Technol, 2017: 239-345
36. Zhang J, Lu Y. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments [J]. Front Microbiol, 2016, 7: 1316
37. Jing Y, Wan J, Angelidaki I, Zhang S, Luo G. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite [J]. Water Res, 2017, 108: 212-221
38. Hu Q, Sun D, Ma Y, Zhang S, Luo G. Conductive polyaniline enhanced methane production from anaerobic wastewater treatment [J]. Polymer, 2017, 120 (30): 236-243
39. Dang Y, Holmes DE, Zhao Z, Woodard TL, Zhang Y, Sun D, Wang LY, Nevin KP, Lovley DR. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials [J]. Bioresour Technol, 2016, 220: 516-522
40. Dang Y, Sun D, Woodard TL, Wang LY, Nevin KP, Holmes DE. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials [J]. Bioresour Technol, 2017, 238: 30-38
41. Lei Y, Sun D, Dang Y, Chen H, Zhao Z, Zhang Y, Holmes DE. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth [J]. Bioresour Technol, 2016, 222: 270-276
42. Choi O, Sang BI. Extracellular electron transfer from cathode to microbes: application for biofuel production [J]. Biotechnol Biofuels, 2016, 9 (1): 1-14
43. Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components [J]. PNAS, 2014, 111 (35): 12883-12888
44. Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens [J]. mBio, 2013, 4 (2): e00105-13
45. Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution [J]. Environ Microbiol, 2011, 13 (1): 13–23
46. 马晨, 周顺桂, 庄莉, 武春媛. 微生物胞外呼吸电子传递机制研究进展[J]. 生态学报, 2011, 31 (7): 2008-2018 [Ma C, Zhou SG, Zhuang L, Wu CY. Electron transfer mechanism of extracellular respiration: a review [J]. Acta Ecol Sin, 2011, 31 (7): 2008-2018]
47. Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958
48. Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. PNAS, 2007, 104 (47): 18871-18873
49. Hara M, Onaka Y, Kobayashi H, Fu Q, Kawaguchi H, Vilcaez J, Sato K. Mechanism of electromethanogenic reduction of CO2 by a thermophilic methanogen [J]. Energy Procedia, 2013, 37: 7021-7028
50. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090
51. Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system [J]. Environ Sci Technol, 2008, 42: 6185–6190
52. Rozendal RA, Jeremiasse AW, Hamelers HV, Buisman CJ. Hydrogen production with a microbial biocathode [J]. Environ Sci Technol, 2008, 42 (2): 629-634
53. Costa KC, Lie TJ, Jacobs MA, Leigh JA. H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis [J]. mBio, 2013, 4 (2): 00062-13
54. Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludi [J]. ISME J, 2014, 8 (8): 1673-1681
55. Deutzmann JS, Sahin M , Spormann AM. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis [J]. mBio, 2015, 6 (2): e00496-15
56. Reda, T, Plugge CM, Abram NJ, Hirst J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme [J]. PNAS, 2008, 105 (31): 10654-10658
57. Haloua F, Foulon E, Allard A, Hay B, Filtz JR. Traceable measurement and uncertainty analysis of the gross calorific value of methane determined by isoperibolic calorimetry [J]. Metrologia, 2015, 52 (6): 741-755
58. Garcia JL, Patel BKC, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea [J]. Anaerobe, 2000, 6 (4): 205-226
59. Tremblay PL, Angenent LT, Zhang T. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces [J]. Trends Biotechnol, 2016, 35 (4): 360-371
60. Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S. Iron-corroding methanogen isolated from a crude-oil storage tank [J]. Appl Environ Micro, 2010, 76 (6): 1783-1788
61. Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens [J]. Biochim Biophys Acta, 2014, 1837 (7): 1130-1147
62. Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation [J]. Biochim Biophys Acta, 2013, 1827 (2): 94-113
63. Kaster AK, Moll J, Parey K, Thauer RK. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea [J]. PNAS, 2011, 108 (7): 2981-2986
64. Heiden S, Hedderich R, Setzke E, Thauer RK. Purification of a cytochrome b, containing H2: heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri [J]. Eur J Biochem, 1993, 213 (1): 529-535
65. 方晓瑜, 李家宝, 瑞俊鹏, 李香真. 产甲烷菌生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21 (1): 1-9 [Fang XY, Li JB, Rui JP, Li XZ. Research progress in biochemical pathways of methanogenesis [J]. Chin J Appl Environ Biol, 2015, 21 (1): 1-9]
66. Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Ann NY Acad Sci, 2008, 1125 (1125): 171-189
67. Smith KS, Ingramsmith C. Methanosaeta, the forgotten methanogen? [J]. Trends Microbiol, 2007, 15 (4): 150-155
68. Zhu J, Zheng H, Ai G, Zhang GS, Liu D, Liu XL, Dong XZ. The genome characteristics and predicted function of methyl-Group oxidation pathway in the obligate aceticlastic methanogens, Methanosaeta spp. [J]. PLoS ONE, 2012, 7 (5): e36756
69. Barber RD, Zhang L, Harnack M, Olson MV, Kaul R, Ingram-Smith C, Smith KS. Complete genome sequence of Methanosaeta concilii, a specialist in aceticlastic methanogenesis [J]. J Bacteriol, 2011, 193 (14): 3668-3669
70. Shrestha PM, Malvankar NS, Werner JJ, Franks AE, Elena-Rotaru A, Shrestha M, Liu F, Nevin KP, Angenent LT, Lovley DR. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment [J]. Bioresour Technol, 2014, 174: 306-310
71. Holmes DE, Shrestha PM, Walker DJF, Dang Y, Nevin KP, Woodard TL, Lovley DR. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils [J]. Appl Environ Microbiol, 2017, 83 (9): 00223-17
72. Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ. Reverse methanogenesis and respiration in methanotrophic archaea [J]. Archaea, 2017, 2017 (17): 1-22
73. Beckmann S, Welte C, Li X, Oo YM, Kroeninger L, Heo Y, Zhang MM, Ribeiro D, Lee M, Bhadbhade M, Marjo CE, Seidel J, Deppenmeier U, Manefield M. Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation [J]. Energ Environ Sci, 2015, 9 (2): 644-655
74. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF. Reverse methanogenesis: testing the hypothesis with environmental genomics [J]. Science, 2004, 305 (5689): 1457-1462
75. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464 (7288): 543-548
76. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage [J]. Nature, 2013, 500 (7464): 567-570
77. Krüger M, Meyerdierks A, Gl?ckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, B?cher R, Thauer RK, Shima S. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically [J]. Nature, 2003, 426 (6968): 878-881
78. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B . Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. PNAS, 2016, 113 (45): 12792-12796
79. Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325 (5937): 184-187
80. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria [J]. Nature, 2015, 526 (7574): 587-590
81. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351 (6274): 703-707
82. Reeburgh WS. Oceanic methane biogeochemistry [J]. Chem Rev, 2007, 107 (2): 486-513
83. Boetius A, Wenzhofer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geosci, 2013, 6 (9): 725-734
84. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, J?rgensen BB, Witte U, Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407 (6804): 623-626
85. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH. Methyl sulfides as intermediates in the anaerobic oxidation of methane [J]. Environ Microbiol, 2008, 10 (1): 162-173
86. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Gl?ckner FO, Reinhardt R, Amann R. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group [J]. Environ Microbiol, 2010, 12 (2): 422-439
87. Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments [J]. Environ Microbiol, 2012, 14 (5): 1333-1346
88. Mcglynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia [J]. Nature, 2015, 526 (7574): 531-535
89. Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial partners of anaerobic methanotrophic archaea [J]. mBio, 2017, 8 (4): e00530-17
90. Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MS, R?ckmann T, van der Veen C, B?nd? N, Kartal B, Ettwig KF, Slomp CP. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environ Sci Technol, 2015, 49 (1): 277-283
91. Ding J, Lu Y Z, Fu L, Ding ZW, Mu Y, Cheng SH, Zeng RJ. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell [J]. Water Res, 2016, 110: 112-119
92. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM. Zero-valent sulphur is a key intermediate in marine methane oxidation [J]. Nature, 2012, 491 (7425): 541-546
93. Michelusi N, Pirbadian S, El-Naggar MY, Mitra U. A stochastic model for electron transfer in bacterial cables [J]. IEEE, 2014, 32 (12): 2402-2416

更新日期/Last Update: 2018-10-25