|本期目录/Table of Contents|

[1]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873-878.[doi:10.19675/j.cnki.1006-687x.2017.11011]
 JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):873-878.[doi:10.19675/j.cnki.1006-687x.2017.11011]
点击复制

三维电极微生物燃料电池处理生活污水同步产电性能
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
873-878
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation
作者:
蒋沁芮李泽华杨暖吴亭亭李大平
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
JIANG Qinrui1 2 LI Zehua1 2 YANG Nuan1 2 WU Tingting1 2 & LI Daping1**
1 Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
微生物燃料电池三维电极生活污水COD氨氮产电
Keywords:
microbial fuel cell three-dimensional electrodes domestic wastewater COD ammonia nitrogen electricity generation
分类号:
X703
DOI:
10.19675/j.cnki.1006-687x.2017.11011
摘要:
为促进微生物燃料电池(MFC)推广应用于实际,构建以填充碳毡构成的三维结构为电极的单室微生物燃料电池,用于处理生活污水同步产电. 对比分析序批运行和连续运行方式对生活污水的处理效果以及MFC的产电性能. 在序批实验中,5 d内化学需氧量(COD)、氨氮(NH4+-N)去除率分别达到91.1%和98.2%,处理结果符合城镇污水处理厂污染物排放标准(GB18918-2002)一级A标准;当MFC外接51 Ω电阻时最大功率密度为27.88 mW/m3. 在连续实验中,污水以稳定流速(0.2 mL/min)自反应器底部注入,形成上流式连续运行模式,其水力停留时间(HRT)为5 d,此时出水中COD保持稳定,去除率变化范围为83.2%-97.4%,NH4+-N浓度逐渐降低保持在9.45 mg/L以下,反应器对污水中NH4+-N的去除效果较好,自第11天后出水中有NO3--N积累,导致总氮去除率较低. 连续运行方式下MFC最大功率密度为582.5 mW/m3,约是序批方式的21倍;平稳期平均输出电压为0.087 7 V,是序批运行时的2.9倍. 结果表明在连续运行方式下,由于有机物得到补充,微生物可不断利用有机物用于产电,所以连续运行方式时MFC的产电性能更好,可以改善序批方式下输出电压较低的现象. 最后基于16S rRNA高通量测序分析电极上微生物群落,发现主导微生物属于Thauera sp.、Saprospiraceae-UN sp.、OPB56-UN sp.,Thauera sp.是一类能以电极为电子供体而还原NO3-?-N的脱氮微生物. 因此可通过富集此类脱氮菌来降低连续运行方式下出水NO3?-N浓度,这为改善污水处理效果提供了一种新方法. (图5 参29)
Abstract:
A single chamber microbial fuel cell (MFC) with three-dimensional electrodes packed bed carbon felts was developed to treat domestic wastewater while simultaneously generating electricity. The influence of batch and continuous operation mode on treatment effectiveness and electricity production of the MFC was investigated to provide a reference for the application of the MFC. The MFC with a total working volume of 1 440 mL was operated in the fed-batch mode for 5 d repeatedly three times, and then shifted to the continuous mode. During the testing of the continuous mode, wastewater was continuously pumped into the anode compartment at a flow rate of approximately 0.2 mL/min, resulting in a hydraulic retention time of 5 d. During the batch test, the MFC obtained 91.1% chemical oxygen demand (COD) and 98.2% NH4+-N removal, which accorded with the first criteria specified in the discharge standard of pollutants for municipal wastewater treatment plants in China (GB18918-2002). A maximum power density of 27.88 mW/m3 was achieved at a 51 Ω external resistor. During the continuous test, the COD removal efficiencies ranged from 83.2% to 97.4%. The concentration of NH4+-N gradually decreased within 5 d and was then maintained below 9.45 mg/L, thus an enhanced removal performance of NH4+-N was acquired. However, a low removal efficiency of total nitrogen was observed owing to the accumulation of NO3--N in the effluent since day 11. Additionally, the MFC continually generated electricity with a maximum power density of 582.5 mW/m3 and average output voltage of 0.087 7 V during the stable period in the continuous operation mode. Moreover, 16S rRNA gene high-throughput sequencing showed that Thauera sp., Saprospiraceae-UN sp., and OPB56-UN sp. were identified as dominant populations. The results suggested that the organic matter associated with power generation was constantly utilized by the microorganisms in the reactor, which caused an excellent electricity generation performance during the continuous test. Therefore, the continuous operation mode could improve the low output voltage phenomenon in the MFC. Thauera sp., as a type of nitrate-reducing bacteria, was enriched in the autotrophic denitrifying microbial communities; therefore, bio-enrichment with denitrifying bacteria such as Thauera sp. could decrease the concentration of NO3--N in the effluent during the continuous operation mode, which is expected to be an innovation for improvement of wastewater treatment.

参考文献/References:

Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285
2 吴伟杰, 王琨, 姜珺秋. 无膜生物阴极微生物燃料电池处理生活污水[J]. 哈尔滨商业大学学报, 2013, 29 (2): 160-163 [Wu WJ, Wang K, Jiang JQ. Domestic sewage treatment performance by bio-cathode membrane-less microbial fuel cell [J]. J Harbin Univ Commerce, 2013, 29 (2): 160-163]
3 强琳, 袁林江, 丁擎. 缓冲液对微生物燃料电池产电性能影响研究[J]. 环境科学, 2011, 32 (5): 1524-1528 [Qiang L, Yuan LJ, Ding Q. Influence of buffer solutions on the performance of microbial fuel cell electricity generation [J]. Environ Sci, 2011, 32 (5): 1524-1528]
4 Ge Z, He Z. Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost [J]. Environ Sci Water Res Technol, 2016, 2 (2): 274-281
5 Qin M, Molitor H, Brazil B, Novak JT, He Z. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system [J]. Bioresour Technol, 2016, 200: 485-492
6 Tong Y, He Z. Current-driven nitrate migration out of groundwater by using a bioelectrochemical system [J]. RSC Adv, 2014, 4 (20): 10290-10294
7 Zhang G, Lee DJ, Cheng F. Treatment of domestic sewage with anoxic/oxic membrane-less microbial fuel cell with intermittent aeration [J]. Bioresour Technol, 2016, 218: 680-686
8 Yu YY, Zhai DD, Si RW, Sun JZ, Liu X, Yong YC. Three-dimensional electrodes for high-performance bioelectrochemical systems [J]. Intern J Mol Sci, 2017, 18 (1): 90
9 Xie X, Criddle C, Cui Y. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems [J]. Energy Environ Sci, 2015, 8 (12): 3418-3441
10 Chen S, He G, Liu Q, Harnisch F, Zhou Y, Chen Y, Hanif M, Wang S, Peng X, Hou H, Schr?der U. Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis [J]. Energy Environ Sci, 2012, 5 (12): 9769
11 Di Lorenzo M, Scott K, Curtis TP, Head IM. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell [J]. Chem Eng J, 2010, 156 (1): 40-48
12 He Z, Wagner N, Minteer SD, Angenent LT. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy [J]. Environ Sci Technol, 2006, 40 (17): 5212-5217
13 Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group [J]. Microbiol Rev, 1979, 43 (2): 260-296
14 Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency [J]. Biotechnol Lett, 2003, 25 (18): 1531-1535
15 Jiang HM, Luo S-J, Shi X-S, Dai M, Guo R-B. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation [J]. J Central SUniv, 2013, 20 (2): 488-494
16 Mench MM, Wang CY, Thynell ST. An introduction to fuel cells and related transport phenomena [J]. Intern J Transport Phenomena, 2001, 3 (3): 1-58
17 刘睿, 高艳梅, 王晓慧, 付进南, 海热提, 罗南, 李媛. 水力停留时间对MFC-A2/O工艺处理生活污水的影响[J]. 环境科学学报, 2017, 37 (2): 680-685 [ Liu R, Gao YM, Wang XH, Fu JN, Hai RT, Luo N, Li Y. Effects of hydraulic retention time on MFC coupled A2/O progress for domestic wastewater treatment [J]. Acta Sci Circumst, 2017, 37 (2): 680-685]
18 Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology [J]. Environ Sci Technol, 2006, 40 (17): 5181-5192
19 Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, Von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M. Complete nitrification by Nitrospira bacteria [J]. Nature, 2015, 528 (7583): 504-509
20 Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems [J]. Curr Opin Biotechnol, 2002, 13 (3): 218-227
21 王敏, 尚海涛, 郝春博, 骆鹏, 顾军农. 饮用水深度处理活性炭池中微生物群落分布研究[J]. 环境科学, 2011, 32 (5): 1497-1504 [Wang M, Shang HT, Hao CB, Luo P, Gu JN. Diversity and bacteria community structure of activated carbon used in advanced drinking watertreatment [J]. Environ Sci, 2011, 32 (5): 1497-1504]
22 Mao Y, Xia Y, Zhang T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing [J]. Bioresour Technol, 2013, 128: 703-710
23 Du Z, Li Q, Tong M, Li S, Li H. Electricity generation using membrane-less microbial fuel cell during wastewater treatment [J]. Chin J Chem Eng, 2008, 16 (5): 772-777
24 Ghangrekar MM, Shinde VB. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production [J]. Bioresour Technol, 2007, 98 (15): 2879-2885
25 He Z, Minteer SD, Angenent LT. Electricity generation from artificial wastewater using an upflow microbial fuel cell [J]. Environ Sci Technol, 2005, 39 (14): 5262-5267
26 Liu H, Cheng SA, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration [J]. Environ Sci Technol, 2005, 39 (14): 5488-5493
27 Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P. The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers [J]. Environ Microbiol, 2006, 8 (11): 2012-2021
28 Mao Y, Zhang X, Yan X, Liu B, Zhao L. Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations [J]. J Microbiol Methods, 2008, 75 (2): 231-236
29 Valle A, Bailey MJ, Whiteley AS, Manefield M. N-acyl-L-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge [J]. Environ Microbiol, 2004, 6 (4): 424-433

相似文献/References:

[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
 LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):147.
[2]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780.[doi:10.3724/SP.J.1145.2012.00780]
 ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):780.[doi:10.3724/SP.J.1145.2012.00780]
[3]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):978.[doi:10.3724/SP.J.1145.2012.00978]
[4]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
 GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):1075.[doi:10.3724/SP.J.1145.2012.01075]
[5]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36.[doi:10.3724/SP.J.1145.2014.03030]
 LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):36.[doi:10.3724/SP.J.1145.2014.03030]
[6]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]

更新日期/Last Update: 2018-08-25