|本期目录/Table of Contents|

 XIE Miaomiao,WU Zhineng,WANG Xi,et al.Isolation, identification, and the degradation characteristics of a BDE-47 degrading strain[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):915-920.[doi:10.19675/j.cnki.1006-687x.2017.11009]





Isolation, identification, and the degradation characteristics of a BDE-47 degrading strain
天津市城市生态环境修复与污染防治重点实验室,环境污染过程与基准教育部重点实验室,南开大学环境科学与工程学院 天津 300071
XIE Miaomiao WU Zhineng WANG Xi GU Jie CHEN Lin & WANG Yingying**
Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
BDE-47 degrading?bacteria screening and identification degradation rate electron acceptor
为去除环境中BDE-47的残留,通过以BDE-47为碳源的选择性培养基驯化,从电子垃圾拆解厂的土壤中分离出了1株厌氧降解BDE-47的纯菌种,命名为XM,并研究其对BDE-47的降解特性. 经16S rDNA鉴定,XM属于兼性肠杆菌(Enterobacter sp.),当BDE-47浓度为525 μg/L,初始接菌量为7.1 × 105 cells/mL时,培养35 d后降解率为35.8%,降解产物中检测到BDE-28. BDE-47的降解反应符合一级动力学,拟合结果为ln Ct = - 0.104t + 6.22. 选择以铁离子、硝酸根和硫酸根作为降解过程中外加的电子受体,BDE-47的降解率明显提高,分别为49.8%、59.1%和67.3%. 以上研究结果表明,菌株XM能够有效地降解BDE-47,在电子垃圾污染的生物修复方面具有较好的参考和应用价值. (图5 表1 参53)
In an effort to remove BDE-47 residues from the environment, a bacterial strain that is capable of utilizing BDE-47 as the sole carbon source was isolated and screened from soil collected from an e-waste recycling area in Tianjin to analyze the degradation properties. The strain was preliminarily identified as Enterobacter sp. according to a 16S rDNA gene sequence analysis. The strain degraded 35.8% of 525 μg/L of BDE-47 in 35 d when the initial concentration?of?bacteria was 7.1 × 105 cells/mL. The product of the biodegradation of BDE-47 was BDE-28. The biodegradation of BDE-47 fit well with first-order kinetics, and its degradation kinetics was ln Ct = - 0.104t + 6.22. With the addition of an electron acceptor, such as Fe3+, SO42- and NO3-, the BDE-47 degradation rate was significantly increased to 49.8%, 59.1%, and 67.3%, respectively. The above results revealed that the strain could degrade BDE-47, which is of importance in the application of environmental bioremediation of BDE-47.


1 Leonel J, Sericano JL, Secchi ER, Bertozzi C, Fillmann G, Montone RC. PBDE-28 levels in franciscana dophin (Pontoporia blainvillei): temporal trend and geographical comparison [J]. Sci Total Environ, 2014, 493: 405-410
2  Zhang XM, Sühring R, Serodio D, Bonnell M, Sundin N, Diamond M L. Novel flame retardants: estimating the physical-chemical properties and environment fate of 94 halogenated and organophosphate PBDE-28 replacements [J]. Chemophere, 2016, 144: 2401-2408
3 Chen A, Dietrich KN, Huo X, Ho SM. Developmental neurotoxicants in e-waste: an emerging health concern [J]. Environ Health Perspect, 2011, 119: 431-438
4  管玉峰, 涂秀云, 吴宏海. 珠江入海口水体中多溴联苯醚及其来源分析[J]. 生态环境学报, 2011, 20 (3): 474-479 [Guan YF, Tu XY, Wu HH. Distribution and source of polybrominated diphenyl ethers (PBDEs) in riverine water of the Pearl River Delta [J]. Ecol Environ Sci, 2011, 20 (3): 474-479]
5 Li Y, Niu S, Hai R, Li M. Concentrations and distribution of polybrominated diphenyl ethers (PBDEs) in soils and plants from a deca-BDE manufacturing factory in China [J]. Environ Sci Pollut Res, 2015, 22: 1133-1143
6 Cheng Z, Wang Y, Wang S, Luo C, Li J, Chaemfa C, Jiang H, Zhang G. The influence of land use on the concentration and vertical distribution of PBDEs in soils of an e-waste recycling region of South China [J]. Environ Pollut, 2014, 191: 126-131
7 Sun Y, Yuan GL, Li J, Li JC, Wang GH. Polybrominated diphenyl ethers in surface soils near the Changwengluozha glacier of central Tibetan Plateau, China [J]. Sci Total Environ, 2015, 511: 399-406
8 Yang C, Harrad S, Abdallah MA, Desborough J, Rose NL, Turner SD, Davidson TA, Goldsmith B. Polybrominated diphenyl ethers (PBDEs) in English freshwater lakes, 2008-2012 [J]. Chemosphere, 2014, 110: 41-47
9 Yang Y, Xie Q, Liu X, Wang J. Occurrence, distribution and risk assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in nine water sources [J]. Ecotoxicol Environ Saf, 2015, 115: 55-61
10 Liu D, Wu SM, Zhang Q, Guo M, Cheng J, Zhang SH, Yao C, Chen JQ. Occurrence, spatial distribution, and ecological risks of typical hydroxylated polybrominated diphenyl ethers in surface sediments from a large freshwater lake of China [J]. Environ Sci Pollut Res, 2017, 24: 5773-5780
11 Tang Z, Huang Q, Cheng J, Yang Y, Yang J, Guo W, Nie Z, Zeng N, Jin L. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: a neglected heavily polluted area [J]. Environ Sci Technol, 2014, 48: 1508-1516
12  Wang XT, Chen L, Wang XK, Zhang Y, Zhou J, Xu SY, Sun YF, Wu MH. Occurrence, profiles, and ecological risks of polybrominated diphenyl ethers (PBDEs) in river sediments of Shanghai, China [J]. Chemosphere, 2015, 133: 22-30
13 Lü J, Zhang Y, Zhao X, Zhou C, Guo C, Luo Y, Meng W, Zou G, Xu J. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sediments of Liaohe River: levels, spatial and temporal distribution, possible sources, and inventory [J]. Environ Sci Pollut Res, 2015, 22: 4256-4264
14 Luo P, Ni HG, Bao LJ, Li SM, Zeng EY. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition [J]. Environ Sci Technol, 2014, 48: 13793-13799
15 Yang M, Qi H, Jia HL, Ren NQ, Ding YS, Ma WL, Liu LY, Hung H, Sverko E, Li YF. Polybrominated diphenyl ethers in air across China: levels, compositions, and gas-particle partitioning [J]. Environ Sci Technol, 2013, 47: 8978-8984
16 Mackintosh, SA, Wallace JS, Gross MS, Navarro DD, Perez-Fuentetaja A, Alaee M, Montecastro D, Aga DS. Review on the occurrence and profiles of polybrominated diphenyl ethers in the Philippines [J]. Environ Int, 2015, 85: 314-326
17 Whalen MM, Hurd T. Tetrabromobishenol A decreases cell-surface proteins involved in human natral killer (NK) cell-dependant target cell lysis [J]. J Immunotoxicol, 2011, 8 (3): 393-397
18 Chen A, Yolton K, Rauch SA, Webster GM, Hornung R, Sj?din A, Dietrich KN, Lanphear BP. Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. children through 5 years of age: the HOME study [J]. Environ Health Perspect, 2014, 122 (8): 856-862
19 Zhao XS, Wang ST, Li DM, You H, Ren X. Effects of percholorate on BDE-47-induced alteration thyroid hormone and gene expression of in the hypothalamus-pituitary-thyroid axis in zebrafish larvae [J]. Environ Toxicol Pharmacol, 2013, 36 (3): 1176-1185
20 Zhang Z, Zhang XM, Sun ZZ, Dong HB, Zhou JP, Wang XR, Wang SL. Cytochrome P450 3A1 mediates 2,2’,4,4’-tetrabromodiphenyl ether-induced reduction of spermatogenesis in adult rats [J]. PLoS ONE, 2013, 8 (6): e66301
21 矫立萍. 多溴联苯醚环境行为对生态环境的研究进展[J]. 资源节约与环保, 2014, 2: 129-134 [Jiao LP. The research progress of the environmental behavior of polybrominated diphenyl ethers (PBDEs) on the ecological environment [J]. Resour Econ Environ Prot, 2014, 2: 129-134]
22 Arkoosh MR, Boylen D, Dierich J, Anulacion BF, Ylitalo G, Bravo CF, Johnson LL, Loge FJ, Collier TK. Disease susceptibility of salmon exposed to polybrominated diphenyl ethers (PBDEs) [J]. Aquat Toxical, 2010, 98 (1): 51-59
23 Hardell L, Carlberg M, Hardell K, Bj?rnfoth H, Wickbom G, Lonescu M, Bavel BV, Lindstr?m G. Decreased survival in pancreatic cancer patients with high concentrations of organochlorines in adipose tissue [J]. Biomed Pharmacother, 2007, 61 (10): 659-664
24 Xie Y, Fang Z, Cheng W, Tsang PE, Zhao D. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism [J]. Sci Total Environ, 2014, 485-486: 363-370
25 Zhang M, Lu J, Xu Z, He Y, Zhang B, Jin S, Boman B. Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles [J]. Front Environ Sci Eng, 2015, 9: 832-839
26 Vesely M, Vajglova Z, Kotas P, Kristal J, Ponec R, Jiricny V. Model for photodegradation of polybrominated diphenyl ethers [J]. Environ Sci Pollut Res, 2015, 22: 4949-4963
27 Wang JZ, Hou Y, Zhang J, Zhu J, Feng YL. Transformation of 2, 2’, 4, 4’-tetrabromodiphenyl ether under UV irradiation: potential sources of the secondary pollutants [J]. J Hazard Mater, 2013, 263: 778-783
28 Wang M, Wang H, Zhang R, Ma M, Mei K, Fang F, Wang X. Photolysis of low-brominated diphenyl ethers and their reactive oxygen species-related reaction mechanisms in an aqueous system [J]. PLoS ONE, 2015, 10: e0135400
29 Li L, Chang W, Wang Y, Ji H, Chen C, Ma W, Zhao J. Rapid, photocatalytic, and deep debromination of polybrominated diphenyl ethers on Pd-TiO2: intermediates and pathways [J]. Chemistry, 2014, 20: 11163-11170
30 Stiborova H, Vrkoslavova J, Lovecka P, Pukabova J, Haislova P, Haislova J, Demnerova K. Aerobic biodegradation of selected polybrominated diphenyl ethers (PBDEs) in wastewater sewage sludge [J]. Chemosphere, 2015, 118: 315-321
31 Wang LQ, Li Y, Zhang W, Niu L, Du J, Cai W, Wang J. Isolation and characterization of two novel psychrotrophic decabromodiphenyl ether-degrading bacteria from river sediments [J]. Environ Sci Pollut Res, 2016, 23 (11): 10371-10381
32 Stiborova H, Vrkoslavova J, Lovecka P, Pulkrabova J, Hradkova P, Hajslova J, Demnerova K. Aerobic biodegradation of selected polybrominated diphenyl ethers (PBDEs) in wastewater sewage sludge [J]. Chemosphere, 2015, 118: 315-321
33 Yang CW, Huang HW, Chao WL, Chang BV. Bacterial communities associated with aerobic degradation of polybrominated diphenyl ethers from river sediments [J]. Environ Sci Pollut Res Int, 2015, 22 (5): 3810-3819
34 Xu G, Wang J, Lu M. Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron [J]. Chemosphere, 2014, 117: 455-461
35 Rodenburg LA, Meng Q, Yee D, Greenfield BK. Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment [J]. Chemosphere, 2014, 106: 36-43
36 赵宇, 尹华, 龙焰, 叶锦韶, 彭辉, 秦华明, 何宝燕, 张娜. 一株十溴联苯醚高效好氧降解菌的筛选、鉴定及降解特性[J]. 微生物学通报, 2013, 40 (6): 988-998 [Zhao Y, Yin H, Long Y, Ye JS, Peng H, Qin HM, He BN, Zhang N. Screening, identification and characteristics of an effective decabromodiphenyl ether degrading aerobic strain [J]. Microbiol Chin, 2013, 40 (6): 988-998]
37 张可, 刘福义, 陈伟, 陈佳, 黄俊, 陈强. 玉米芯吸附-海藻酸钠固定微生物对十溴联苯醚的降解[J]. 应用与环境生物学报, 2016, 22 (5): 904-910 [Zhang K, Liu FY, Chen W, Chen J, Huang J, Chen Q. Degradation of decabromodiphenyl ether by corncob-sodium alginate immobilized bacteria [J]. Chin J Appl Environ Biol, 2016, 22 (5): 904-910]
38 Ronen Z, Abeliovich A. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A [J]. Appl Environ Microbiol, 2000, 66 (6): 2372-2377
39 郭浩, 夏慧丽, 王书琪, 赵晓祥. 多溴联苯醚好氧降解菌GH10的筛选及降解特性研究[J]. 安全与环境学报, 2015, 15 (4): 216-220 [Guo H, Xia HL, Wang SQ, Zhao XX. Isolation of an aerobic bacterial strain GH10 capable of PBDEs-degradation and its biodegradation behaviors [J]. J Saf Env, 2015, 15 (4): 216-220]
40 Kristin RR, Peter K, Lisa AC. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers [J]. Environ Sci Technol, 2008, 42: 2845-2852
41 Susanne LW, John RP. Biodegradation of brominated and organophosphorus flame retardants [J]. Curr Opin Biotech, 2016, 38: 14-23
42 Ilya U, Dava DD, Juergen W. Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1 [J]. Appl Environ Microbiol, 1995, 61 (1): 346-351
43 卢晓霞, 陈超琪, 张姝, 欧阳, 尹力, 吴蔚. 厌氧条件下2,2’,4,4’-四溴联苯醚的微生物降解[J]. 环境科学, 2012, 33 (3): 1000-1007 [Lu XN, Chen CQ, Zhang S, Ou Y, Yin L, Wu W. Microbial degradation of 2,2’,4,4’-tetrabrominated diphenyl ether under anaerobic condition [J]. Environ Sci, 2012, 33 (3): 1000-1007]
44 于瑶瑶, 韩伟, 王莹莹. 一株蒽降解细菌的分离及降解特性研究[J]. 微生物学通报, 2015, 42 (12): 2321-2329 [Yu YY, Han W, Wang YY. Isolation and characterization of an anthracene degradation bacterial strain [J]. J Microbiol, 2015, 42 (12): 2321-2329]
45 东秀珠, 蔡少英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 353-387 [Dong XZ, Cai MY, Liu PT. Manual of systemaic common bacteriology [M]. Beijing: Science Press, 2001: 353-387]
46 布坎南, 吉本斯. 伯杰氏细菌鉴定手册[M]. 8版. 北京: 科学出版社, 1984 [Bu KN, Ji BS. Berger’s Bacterial Identification Manual [M]. 8th ed. Beijing: Science Press, 1984]
47 Li CH, Wong YS, Tam NF. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(Ⅲ) in mangrove sediment slurry [J]. Bioresour Technol, 2010, 101 (21): 8083-8092
48 常晶晶. 铅黄肠球菌降解十溴联苯醚特性及差异蛋白分析[D]. 广州: 暨南大学, 2014 [Chang JJ. Degradation characteristics of Enterococcus casselifla and the analysis of differential protein in the process of BDE-209 degradation [D]. Guangzhou: Jinan University, 2014]
49 Gerecke AC, Giger W, Hartmann PC. Anaerobic degradation of brominated flame retardants in sewage sludge [J]. Chemosphere, 2006, 64: 311-317
50 Robrock KR, Korytar P, Alvarez-Cohen L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers [J]. Environ Sci Technol, 2008, 42: 2845-2852
51 Xu L, Xu JJ, Jia LY, Liu WB, Jian X. Congener selectivity during polychlorinated biphenyls degradation by Enterobacter sp. LY402 [J]. Curr Microbiol, 2011, 62 (3): 784-789
52 Wilson LP, Bouwer EJ. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review [J]. J Ind Microbiol Biot, 1997, 18: 116-130
53 侯晓鹏, 李春华, 叶春,许士洪, 郑向勇. 不同电子受体作用下微生物降解多环芳烃研究进展[J]. 环境工程技术学报, 2016, 6 (1): 78-84 [Hou XP, Li CH, Ye C, Xu SH, Zheng XY. Research progress of biodegradation of polycyclic aromatic hydrocarbons with amendment of different electron acceptors [J]. J Environ Sci Technol, 2016, 6 (1): 78-84]


 WU Hongjie,TAN Zhouliang,LIU Qinghua,et al.Isolation and Characterization of an Aniline-degrading and Phenol-degrading Bacterium[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):252.[doi:10.3724/SP.J.1145.2010.00252]
[2]张可,刘福义,陈伟,等.玉米芯吸附-海藻酸钠固定微生物 对十溴联苯醚的降解*[J].应用与环境生物学报,2016,22(05):904.[doi:10.3724/SP.J.1145.2015.11019]
 ZHANG Ke,LIU Fuyi,CHEN Wei,et al.Degradation of decabromodiphenyl ether by corncob–sodium alginate immobilized bacteria*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):904.[doi:10.3724/SP.J.1145.2015.11019]
 JI Shaoze,GOU Changlong,ZHANG Xiqing,et al.Construction and application of a highly efficient complex microbial system to degrade dead-pig carcass in compost and assessment of its efficiency[J].Chinese Journal of Applied & Environmental Biology,2020,26(04):528.[doi:10.19675/j.cnki.1006-687x.2019.07007]

更新日期/Last Update: 2018-08-25