|本期目录/Table of Contents|

[1]褚翠伟,刘斌,朱启黎,等.杀草丹降解菌Bacillus sp. T2的筛选、鉴定及降解特性[J].应用与环境生物学报,2018,24(04):921-927.[doi:10.19675/j.cnki.1006-687x.2017.11004]
 CHU Cuiwei,LIU Bin,ZHU Qili,et al.Isolation, identification, and the degradation characteristics of a thiobencarb-degrading bacterium Bacillus sp. T2[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):921-927.[doi:10.19675/j.cnki.1006-687x.2017.11004]
点击复制

杀草丹降解菌Bacillus sp. T2的筛选、鉴定及降解特性
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
921-927
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Isolation, identification, and the degradation characteristics of a thiobencarb-degrading bacterium Bacillus sp. T2
作者:
褚翠伟刘斌朱启黎李娜何健
1周口师范学院生命科学与农学学院 周口 466001 2南京农业大学生命科学学院,农业部农业环境微生物工程重点开放实验室 南京 210095 3江西省南康市教师进修学校 赣州 341400
Author(s):
CHU Cuiwei1 LIU Bin2 ZHU Qili3 LI Na2 & HE Jian2**
1 College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China 2 Ministry of Agriculture Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life and Science, Nanjing Agricultural University, Nanjing 210095, China 3 Nankang Teachers Training School, Ganzhou 341400, China
关键词:
杀草丹芽孢杆菌菌株筛选鉴定降解特性降解机制
Keywords:
thiobencarb Bacillus sp. T2 screening and identification of strain degradation characteristics degradation mechanism
分类号:
X172
DOI:
10.19675/j.cnki.1006-687x.2017.11004
摘要:
为研发稻田除稗剂杀草丹污染环境的生物修复技术和探究杀草丹微生物降解代谢机制,通过微生物驯化与富集技术,从长期施用杀草丹水稻田土样中分离纯化一株能够以杀草丹为唯一碳源生长的高效降解菌株T2,在36 h内对0.4 mmol/L的杀草丹降解率达到98.3%以上. 根据其形态、生理生化特征及16S rRNA基因序列相似性分析,将其初步鉴定为芽孢杆菌属(Bacillus sp. T2). 通过GC-MS鉴定产物为对氯苄硫醇、对氯苯甲醛和对氯苯甲酸;依据产物鉴定结果推测菌株T2通过硫酯键水解的方式起始杀草丹的降解,首先将其转化为对氯苄硫醇,随后进一步被氧化为对氯苯甲醛和对氯苯甲酸,该降解途径可能是一种新的杀草丹微生物降解代谢途径. 因此菌株Bacillus sp. T2对杀草丹具有非常高的降解效率,在污染环境的微生物修复方面具有很好的应用前景;本研究结果也为揭示土壤中杀草丹微生物降解代谢过程及机制提供了研究材料和理论依据. (图8 参26)
Abstract:
Thiobencarb, a thiocarbamate herbicide, is widely used to control weeds in rice paddies. Screening for highly efficient thiobencarb-degrading bacteria is important for the bioremediation of thiobencarb-contaminated environments. The aim of this study was to isolate and identify highly efficient thiobencarb-degrading bacteria and to identify the degradation pathway and the degrading properties. The thiobencarb-degrading strain was isolated using methods of microbiological acclimation and enrichment and was then identified using a 16S rRNA phylogenetic analysis. The degrading properties of the isolated bacterium were determined by single-factor experiments, and the degradation products were identified using gas chromatography-mass spectrometry (GC-MS). A thiobencarb-degrading strain T2, which can utilize thiobencarb as the sole source of carbon for energy and growth, was isolated from paddy soil. Strain T2 degraded more than 98.3% of 0.4 mmol/L of thiobencarb within 36 h. It was preliminarily identified as Bacillus sp. T2 according to the 16S rRNA gene analysis and from its morphological, physiological, and biochemical characteristics. The metabolic products of the thiobencarb degradation for strain T2 were identified as 4-chlorobenzyl mercaptan, 4-chlorobenzaldehyde, and 4-chlorobenzoic acid by the GC-MS. Based on metabolite identification, it was speculated that thiobencarb degradation in strain T2 was initiated by the hydrolysis of the thioester bond to produce 4-chlorobenzyl mercaptan, which was further oxidized to 4-chlorobenzaldehyde and 4-chlorobenzoic acid. The thiobencarb degradation that was initiated by the hydrolysis of the thioester bond by strain T2 is a new metabolic pathway, which provides valuable research material and reliable experimental data for revealing the metabolic process and mechanism of thiobencarb microbial degradation in soil. The strain Bacillus sp. T2 has a very high degradation efficiency, suggesting it is a good prospect for microbial remediation in thiobencarb-polluted environments.

参考文献/References:

1 Tanetani Y, Kaku K, Ikeda M, Shimizu T. Action mechanism of a herbicide, thiobencarb [J]. J Pestic Sci, 2013, 38 (1): 39-43
2 Sapari P, Ismail BS. Pollution levels of thiobencarb, propanil, and pretilachlor in rice fields of the muda irrigation scheme, Kedah, Malaysia [J]. Environ Monit Assess, 2012, 184 (10): 6347-6356
3 Eladel HM, Henley WJ, Kobbia IA. Effect of thiobencarb on growth and photosynthesis of the soil alga Protosiphon botryoides (Chlorophyta) [J]. J Appl Phycol, 1998, 10 (6): 547-554
4 Villalobos SA, Hamm JT, Teh SJ, Hinton DE. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of chorion [J]. Aquat Toxicol, 2000, 48 (2): 309-326
5 Zargar MY, Dar GH. Effect of benthiocarb and butachlor on growth and nitrogen fixation by Cyanobacteria [J]. Bull Environ Contam Toxicol, 1990, 45 (2): 232-234
6 Battah MG, Shabana EF, Kobbia IA, Eladel, HM. Differential effects of thiobencarb toxicity on growth and photosynthesis of Anabaena variabilis with changes in phosphate level [J]. Ecotoxicol Environ Saf, 2001, 49 (3): 235-239
7 Sabater C, Carrasco JM. Effects of thiobencarb on the growth of three species of phytoplankton [J]. Bull Environ Contam Toxicol, 1996, 56 (6): 977-984
8 Das AC, Barman S, Das R. Effect of pre-emergence herbicides on microbial biomass and biochemical processes in a typic fluvaquent soil amended with farm yard manure [J]. B Environ Contam Tox, 2015, 95 (3): 395-400
9 Bhowmick S, Das R, Das AC. Effect of thiobencarb and pretilachlor on microorganisms in relation to mineralization of C and N in the Gangetic alluvial soil of West Bengal [J]. Environ Monit Assess, 2014, 186 (10): 6849-6856
10 Cheng HM, Hwang DF. Photodegradation of benthiocarb [J]. Chem Ecol, 1996, 12 (12): 91-101
11 Ishikawa K, Okuda I, Kuwatsuka S. Metabolism of benthiocarb (4-Chlorobenzyl N,N-Diethylthiolcarbamate) in mice [J]. Biosci Biotechnol Biochem, 1973 , 37 (1): 165-173
12 Cashman JR, Olsen LD, Nishioka RS, JR Cashman, Gray ES, Bern HA. S-oxygenation of thiobencarb (Bolero) in hepatic preparations from striped bass (Morone saxatilis) and mammalian systems [J]. Chem Res Toxicol, 1990, 3 (5): 433-440
13 Nakamura Y, Ishikawa K, Kuwatsuka S. Metabolic fate of benthiocarb herbicide in plants [J]. Agric Biol Chem, 1977, 41 (9): 1613-1620
14 Ishikawa K, Nakamura Y, Kuwatsuka S. Degradation of benthiocarb herbicide in soil [J]. J Pestic Sci , 1976, 1: 49-57
15 Chu CW, Liu B, Li N, Cheng D, Zhao JD, Qin JG, Yan X. A novel aerobic degradation pathway of thiobencarb is initiated by a two-component FMN-dependent monooxygenase system TmoAB in Acidovorax sp. T1 [J]. Appl Environ Microbiol, 2017: AEM.01490-17
16 Gunasekara AS, Tenbrook PL, Palumbo AJ, Johnson CS, Tjeerdema RS. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils [J]. J Agric Food Chem, 2005, 53 (26): 10113-10119
17 Nakamura Y, Ishikawa K, Kuwatsuka S. Degradation of benthiocarb in soils as affected by soil conditions [J]. J Pestic Sci, 1977, 2 (1): 7-16
18 Torra RM, Yajima M, Yamanaka S, Kodama T. Degradation of the herbicides thiobencarb, butachlor and molinate by a newly isolated Aspergillus niger [J]. J Pestic Sci, 2004, 29 (3): 214-216
19 Miwa N, Takeda Y, Kuwatsuka S. Plasmid in the degrader of the herbicide thiobencarb (benthiocarb) isolated from soil [J]. J Pestic Sci, 1988, 13: 291-293
20 冬秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 370-410 [Dong XZ, Cai MY. Identification methods of common bacteria [M]. Beijing: Science Press, 2001: 370-410]
21 Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Deteminative Bacteriology [M]. 9th ed. New York: Williams & Witkins Company, 1994: 520-521
22 Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA [J]. J Chromatogr A, 1989, 479 (2): 297-306
23 Ausubel FM. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology [M]. Hoboken: Wiley, 2002
24 Sai TN, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Mol Bio Evol, 1987, 4 (4): 406
25 Leite JP, Duarte M, Paiva AM, Ferreira-Da-Silva F, Matias PM, Nunes OC, Gales L. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides [J]. PLoS ONE, 2015, 10 (4): e0123430
26 徐剑宏, 洪青, 洪源范, 李顺鹏. 呋喃丹降解菌CFDS-1的筛选鉴定及降解特性[J]. 应用与环境生物学报, 2011, 17 (2): 237-242 [Xu JH, Hong Q, Hong YF, Li SP. Isolation, identification and degradation of carbofuran-degrading strain CFDS-1 [J]. Chin J Appl Environ Biol, 2011, 17 (2): 237-242]

相似文献/References:

[1]王亚南,王保军,戴欣,等.近海养虾场底泥中产芽孢细菌的生态特征[J].应用与环境生物学报,2004,10(04):484.
 WANG Yanan,et al..Ecological characterization of bacilli in sediment from a nearshore marine horticultrtal region[J].Chinese Journal of Applied & Environmental Biology,2004,10(04):484.
[2]卢兰兰,李根保,沈银武,等.溶藻细菌DC-L14的分离、鉴定与溶藻特性[J].应用与环境生物学报,2009,15(01):106.[doi:10.3724/SP.J.1145.2009.00106]
 LU Lanlan,LI Genbao,SHEN Yinwu,et al.Isolation, Identification and Characterization of Blue-green Algae-lysing Strain DC-L14 from Lake Dianchi, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):106.[doi:10.3724/SP.J.1145.2009.00106]
[3]陈谦,张新雄,赵海,等.生物有机肥中几种功能微生物的研究及应用概况[J].应用与环境生物学报,2010,16(02):294.[doi:10.3724/SP.J.1145.2010.00294]
 CHEN Qian,ZHANG Xinxiong,ZHAO Hai,et al.Advance in Research and Application of Some Functional Microbes in Bio-organic Fertilizer[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):294.[doi:10.3724/SP.J.1145.2010.00294]
[4]谢建华,师永生,杜丽琴,等.一株产酸性α-淀粉酶菌株的筛选、纯化及酶学性质[J].应用与环境生物学报,2011,17(01):95.[doi:10.3724/SP.J.1145.2011.00095]
 XIE Jianhua,SHI Yongsheng,DU Liqin,et al.Isolation and Purification of a Strain Producing Acid α-amylase and Its Enzamatic Characterization[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):95.[doi:10.3724/SP.J.1145.2011.00095]
[5]张敏文,刘悦,李荷.响应面法优化菌株Bacillus sp. W77酯酶发酵条件[J].应用与环境生物学报,2012,18(06):993.[doi:10.3724/SP.J.1145.2012.00993]
 ZHANG Minwen,LIU Yue,LI He.Optimization of Fermentation Conditions for Bacillus sp. W77 Eaterase by Response Surface Methodology[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):993.[doi:10.3724/SP.J.1145.2012.00993]
[6]李珣,周存宇,田春元,等.枯草芽孢杆菌中多聚-γ-谷氨酸的生物合成及其调控机制[J].应用与环境生物学报,2013,19(04):575.[doi:10.3724/SP.J.1145.2013.00575]
 LI Xun,ZHOU Cunyu,TIAN Chunyuan,et al.Biosynthesis of Poly-γ-glutamic Acids and Relevant Regulatory Networks in Bacillus subtilis[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):575.[doi:10.3724/SP.J.1145.2013.00575]
[7]张新雄,彭锋,毛光平,等.饲用芽孢杆菌研究与应用进展[J].应用与环境生物学报,2013,19(05):891.[doi:10.3724/SP.J.1145.2013.00891]
 ZHANG Xinxiong,PENG Feng,MAO Guangping,et al.Advance in Research and Application of Bacillus Probiotics[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):891.[doi:10.3724/SP.J.1145.2013.00891]
[8]李雷,冯红.两株芽孢杆菌降解羽毛比较及抗氧化肽分离[J].应用与环境生物学报,2018,24(01):172.[doi:10.19675/j.cnki.1006-687x.2017.02006]
 LI Lei,FENG Hong**.Comparison of feather degradation by two $Bacillus$ strains and separation of antioxidant peptides*[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):172.[doi:10.19675/j.cnki.1006-687x.2017.02006]

更新日期/Last Update: 2018-08-25