|本期目录/Table of Contents|

[1]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663-670.[doi:10.19675/j.cnki.1006-687x.2017.08046]
 HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):663-670.[doi:10.19675/j.cnki.1006-687x.2017.08046]
点击复制

生物电化学系统3种典型构型及其应用研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
663-670
栏目:
综述
出版日期:
2018-06-30

文章信息/Info

Title:
Recent advances in three typical configurations and applications of bioelectrochemical systems
作者:
华涛李胜男周启星李凤祥李亚宁
1南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室,天津市城市生态环境修复与污染防治重点实验室 天津 300350 2南开大学滨海学院环境科学与工程系 天津 300270
Author(s):
HUA Tao1 LI Shengnan1 ZHOU Qixing1 LI Fengxiang1** & LI Yaning2
1Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China 2 Laboratory of Environmental Science and Engineering, Binhai College of Nankai University, Tianjin 300270, China
关键词:
生物电化学系统构型微生物燃料电池微生物电解池脱盐传感器
Keywords:
bioelectrochemical system configuration microbial fuel cell microbial electrolysis cell desalinate sensor
分类号:
O646
DOI:
10.19675/j.cnki.1006-687x.2017.08046
摘要:
生物电化学系统(Bioelectrochemical system,BES)是一种交叉学科的前沿技术,随着全球淡水资源和可利用能源日益剧减,BES构型及应用受到广泛关注. 简述微生物燃料电池和微生物电解池结构、原理和国内外研究动态,系统介绍BES及其影响因素,其中微生物活性、阴阳电极材料及电池构造最为重要;概述增加电极室、增加反应室和微型传感器等三方面构型及近年来的应用研究进展,比较单电极室和多电极室的优缺点,以微生物脱盐电池、微生物电解脱盐电池、微生物产酸产碱脱盐池为基础介绍增加反应室构型,重点综述BES在生化需氧量监测方面的研究. 由于多室微生物燃料电池构造复杂且产能低,单室将是未来生物电化学系统发展趋势;增加反应室主要以脱盐目的为主,且脱盐池的研究仍需要围绕优化阴阳离子交换膜、维持阳极室内pH平衡以及降低空气阴极溶解氧对反应器性能影响;微生物电极传感器可拓宽应用于更多领域,其敏感性和长期稳定性有待进一步提高. 目前对产电微生物群落丰度和活性的研究还相对较少,未来电池构型和增加应用范围依然是BES的研究热点. (图7 参69)
Abstract:
As the world’s freshwater resources and available energy are alarmingly decreasing, the bioelectrochemical system (BES) is a cutting-edge technology for the resolution of the resource and energy issue. Researchers have paid much attention to the application of the BES configuration. Based on the brief introduction of microbial fuel cell and microbial electrolytic cell structure, principles, and domestic and foreign research, the BES and its influencing factors are introduced, specifically including: microbial activity, electrode materials, and configuration. Three important aspects (i.e., the electrode chamber, the reaction chamber, and micro-sensor) are summarized, and the advantages and disadvantages of single-electrode and multi-electrode chambers are compared, based on the microbial desalination cell. Microbial electrolysis desalination cell: Microbial electrolysis desalination and chemical-production cell have been discussed to introduce increasing reaction chamber configuration; this review focuses on the research of BES monitoring with regards to biochemical oxygen demand. The potential applications of the research progress are explored. The results show that the configuration of multi-chamber microbial fuel cell is complex and its efficiency is low, while the single chamber configuration is advantageous. The reaction chamber added is mainly aimed at desalination, and the study of the desalination pool still needs to be focused on optimizing the cation exchange membrane to maintain the anode pH balance and reduce the air cathode dissolved oxygen. Microbial electrode sensor can be applied in more areas, and its sensitivity and long-term stability need to be further improved. However, there is relatively less research on the abundance and activity of electricigen communities; the configurations and scopes of application of BES are still the research priority.

参考文献/References:

1. 韩振宇. 中国2020年城市生活污水排放量预测及对策研究[D]. 大连: 大连理工大学, 2004: 51-52 [Han ZY. The disquisition about forecast and countermeasure of the discharge of domestic sewage from Chinese cities at 2020 [D]. Dallian: Dalian University of Technology, 2004: 51-52]
2. 樊东黎. 世界能源现状和未来[J]. 金属热处理, 2011, 36 (10): 119-131 [Fan DL. Word energy: present and future [J]. Heat Treat Met, 2011, 36 (10): 119-131]
3. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. ISME J, 2007, 1 (1): 9-18
4. Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947
5. Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium(VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165
6. Li Y, Lu A, Ding HR, Jin S, Yan YH, Wang CQ, Zen CP, Wang X. Cr(VI) reduction at rutile- catalyzed cathode in microbial fuel cells [J]. Electrochem Commun, 2009, 11 (7): 1496-1499
7. Huang LP, Chai XL, Chen GH, Logen BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031
8. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360
9. Puig S, Serra M, Vilar-Sanz A, Cabre M, Baneras L, Colprim J, Balaguer MD. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresource Technol, 2011, 102 (6): 4462-4467
10. Zhan GQ, Zhang LX, Li DP, Su WT, Tao Y, Qian JW. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277
11. Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators [J]. Biotechnol Bioeng, 2009, 103 (1): 85-91
12. Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene [J]. Biosens Bioelectron, 2010, 25 (7): 1796-1802
13. 刘柯, 李大平, 王娟. 尿液微生物燃料电池研究[J]. 应用与环境生物学报, 2015, 21 (1): 36-40 [Liu K, Li DP, Wang J. Study on urine microbial fuel cell [J]. Chin J Appl Environ Biol, 2015, 21 (1): 36-40]
14. Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. Proc Natl Acad Sci, 2007, 104 (47): 18871-18873
15. Villano M, Monaco G, Aulenta F, Majone M. Electrochemically assisted methane production in a biofilm reactor [J]. J Power Sources, 2011, 196 (22): 9467-9472
16. Ye B, Luo HP, Lu YB, Liu GL, Zhang RD, Li X. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages [J]. Bioresour Technol, 2017, 244: 913-919
17. Khalfbadam HM, Ginige MP, Sarukkalige R, Kayaalp AS, Cheng KY. Bioelectrochemical system as an oxidizing filter for soluble and particulate organic matter removal from municipal wastewater [J]. Chem Eng J, 2016, 296: 225-233
18. Carlo S, Catia A, Benjamin E, Ioannis I. Microbial fuel cells: From fundamental to applications. A review [J]. J Power Sources, 2017, 356 : 225-244
19. Li FX, Sharma Y, Lei Y, Li BK, Zhou QX. Microbial fuel cells: the effects of configurations, electrolyte solutions and electrode materials on power generation [J]. Appl Biochem Biotechnol, 2010, 160: 168-181
20. Heilmann J, Logan BE. Production of electricity from proteins using a microbial fuel cell [J]. Water Environ Res, 2006, 78 (5): 531- 537
21. Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281- 2285
22. Cheng S, Logan BE. Ammonia treatment of carbon cloth anodesto enhance power generation of microbial fuel cells [J]. Electrochem Commun, 2007, 9: 492-496
23. Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production [J]. Appl Microbiol Biot, 2005, 68: 23-30
24. 王博, 高冠道, 李凤祥, 周启星, 宋晓静, 翟欢欢, 李亚宁. 微生物电解池应用研究进展[J]. 化工进展, 2017, 3: 1084-1092 [Wang B, Gao GD, Li FX, Zhou QX, Song XJ, Zhai HH, Li YN. Microbial syntrophic methanogenesis: a review [J]. Chem Ind Eng Prog, 2017, 3: 1084-1092]
25. 刘健, 高平, 张艳艳, 吴亭亭, 李大平. 生活污水有机负荷率对连续流单室无膜微生物电解池性能的影响[J]. 应用与环境生物学报, 2017, 23 (3): 415-419 [Liu J, Gao P, Zhan YY, Wu TT, Li DP. Influence of domestic wastewater organic loading rate on perfoemance in a continuous membraneless single-chambered microbial electrolysis cell [J]. Chin J Appl Environ Biol, 2017, 23 (3): 415-419]
26. Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstrete W, Rabaey K. Microbial fuel cells: methodology and technology [J]. Environ Sci Technol, 2006, 40: 5181-5192
27. Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells [J]. Environ Sci Technol, 2008, 42 (21): 8101-8107
28. Yu EH, Cheng S, Scott K, Logan BE. Microbial fuel cell performance with non-Pt cathode catalysts [J]. J Power Sources, 2007, 171 (2): 275-281
29. Freguia S, Rabaey K, Yuan Z G, Keller J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells [J]. Electrochim Acta, 2001, 53 (2): 598-603
30. Cheng SA, Liu H, Logan BE. Power densities using different cathode catalysts (Pt and Co TMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J]. Environ Sci Technol, 2006, 40 (1): 364-369
31. Fan Y, Hu HQ, Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration [J]. J Power Sources, 2007, 171 (2): 348-354
32. Zhang XY, Cheng SA, Wang X, Huang X, Logan BE. Separator characteristics for increasing performance of microbial fuel cells [J]. Environ Sci Technol, 2009, 43 (21): 8456-8461
33. LI WW, Sheng GP, Liu XW, Yu HQ. Recent advances in the separators for microbial fuel cells [J]. Bioresour Technol, 2011, 102 (1): 244-252
34. Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstrete W, Rabaey K. Microbial fuel cells: methodology and technology [J]. Environ Sci Technol, 2006, 40: 5181-5192
35. Gregorg KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration [J]. Environ Microbiol, 2004, 6 (6): 596-604
36. He Z, Angenent LT. Application of bacterial biocathodes in microbial fuel cell [J]. Electroanal, 2006, 18 (19-20): 2009-2015
37. Min B, Cheng SA, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells [J]. Water Res, 2005, 39 (9): 1675-1686
38. Oh SE, Logan BE. Voltage reversal during microbial fuel cell stack operation [J]. J Power Sources, 2007, 167 (1): 11-17
39. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environ Sci Technol, 2006, 40 (10): 3388-3394
40. Cao X, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE. A new method for water desalination using microbial desalination cells [J]. Environ Sci Technol, 2009, 43 (18): 7148-7152
41. Jacobson KS, Drew DM, He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode [J]. Bioresour Technol, 2011, 102 (1): 376-380
42. Hemalatha M, Butti SK, Velvizhi G, Mohan SV. Microbial mediated desalination for ground water softening with simultaneous power generation [J]. Bioresour Technol, 2017, 242: 28-35
43. Li Y, Styczynski J, Huang YK, Xu ZH, McCutcheon J, Li BK. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC) [J]. J Power Sources, 2017, 356: 529-538
44. Dong Y, Liu JF, Sui MR, Qu YP, Ambuchi JJ, Wang HM, Feng YJ. A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination [J]. J Hazard Mater, 2017, 321: 307-315
45. Lee HJ, Hong MK, Han SD, Cho SH, Moon SH. Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants [J]. Desalination, 2009, 238 (1): 60-69
46. Mehanna M, Kiely PD, Call DF. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production [J]. Environ Sci Technol, 2010, 44: 9578-9583
47. Mehanna M, Saito T, Yan JL, Hickner M, Cao XX, Huang X, Logan BE. Using microbial desalination cells to reduce water salinity prior to reverse osmosis [J]. Environ Sci Technol, 2010, 3 (8): 1114-1120
48. Luo HP, Jenkins PE, Ren ZY. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells [J]. Environ Sci Technol, 2010, 45 (1): 340-344
49. Liu GL, Luo HP, Tang YB, Chen SS, Zhang RD, Hou YP. Tetramethylammonium hydroxide production using the microbial electrolysis desalinaion and chemical-production cell [J]. Chem Eng J, 2014, 258: 157-162
50. Zhu XP, Logan BE. Microbial electrolysis desalination and chemical production cell for CO2 sequestration [J]. Bioresour Technol, 2014, 159: 24-29
51. Chen SS, Liu GL, Zhang RD, Qin BY, Luo Y, Hou YP. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure [J]. Bioresour Technol, 2012, 116: 507-511
52. Zhang YF, Angelidaki I. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali [J]. Water Res, 2015, 81: 188-195
53. 张尧, 张闻杰, 蒋永, 苏敏, 陶勇, 李大平. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J]. 应用与环境生物学报, 2014, 20 (2): 174-178 [Zhan Y, Zhan WJ, Jiang Y, Su M, Tao Y, Li DP. Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2014, 20 (2): 174-178]
54. Liu J, Mattiasson B. Microbial BOD sensors for wastewater analysis [J]. Water Res, 2002, 36 (15): 3786-3802
55. Moon H, Chang IS, Jang JK. Online monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell [J]. J Microbiol Biotechnol, 2005, 15 (1): 192-196
56. Karube I, Matsunaga T, Mitsuda S, Suzuki S. Microbial electrode BOD sensors [J]. Biotechnol Bioeng, 1977, 19 (10): 1535-1547
57. Thurston CF, Bennetto HP, Delaney GM. Glucose metabolism in a microbial fuel cell: stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yields [J]. J Gen Microbiol, 1985, 131 (6): 1393-1401
58. Pasco N, Baronian K, Jeffries C, Hay J. Biochemical mediator demand-A novel rapid alternative for measuring biochemical oxygen demand [J]. Appl Microbiol Biotechnol, 2000, 53 (5): 613-618
59. Morris K, Catterall K, Zhao H, Pasco N, John R. Ferricyanide mediated biochemical oxygen demand-development of a rapid biochemical oxygen demand assay [J]. Anal Chim Acta, 2001, 442 (1): 129-139
60. Kim BH, Chang IS, Gil GC, Park HS, Kim HJ. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell [J]. Biotechnol Lett, 2003, 25 (7): 541-545
61. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor [J]. Biosens Bioelectron, 2004, 19 (6): 607-613
62. 童基均. 基于电化学技术的重金属离子的检测和乳酸传感器的研究[D]. 杭州: 浙江大学, 2003: 30-45 [Tong JY. Study on detection of heavy metal ions and lactic acid sensors based on electrochemical technology [D]. Hangzhou: Zhejiang University, 2003: 30-45]
63. Kim M, Hyun MS, Gadd GM, Kim HJ. A novel biomonitoring system using microbial fuel cells [J]. J Environ Monitor, 2007, 9 (12): 1323-1328
64. 于海, 何苗, 蔡强, 张理兵. 检测水中急性毒性污染物的发光细菌光纤传感器的研究[J]. 环境科学, 2008, 29 (2): 375-379 [Yu H, He M, Cai Q, Zhang LB. Rerearch of a bioluminent bacterial-based optical fiber sensor to detecting acute effects of pollutants in water [J]. Environ Sci, 2008, 29 (2): 375-379]
65. Deblanc HJ Jr, Deland F, Wagner HN Jr. Automated radiometric detection of bacteria in 2967 blood cultures [J]. J Appl Microbiol, 1971, 22 (5): 846-849
66. Matsunaga T, Karube I, Suzuki S. Electrode system for the determination of microbial populations [J]. Appl Environ Microbiol, 1979, 37 (1): 117-121
67. Nishikawa S, Sakai S, Karube I, Matsunaga T, Suzuki S. Dye-coupled electrode system for the rapid determination of cell populations in polluted water [J]. Appl Environ Microbiol, 1982, 43 (4): 814-818
68. Holtmann D, Schrader J, Sell D. Quantitative comparison of the signals of an electrochemical bioactivity sensor during the cultivation of different microorganisms [J]. Biotechnol Lett, 2006, 28 (12): 889-896
69. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM. Microbial fuel cell biosensor for in situ assessment of microbial activity [J]. Biosens Bioelectron, 2008, 24 (4): 586-590
70.

更新日期/Last Update: 2018-06-30