1 Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century [J]. Science, 2009, 326 (5949): 123-125 2 Hofmann DJ, Butler JH, Dlugokencky EJ, Elkins JW, Masarie K, Montzka SA, Tans P. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the annual greenhouse gas index [J]. Tellus Ser B Chem Phys Meteorol, 2010, 58 (5): 614-619 3 Syakila A, Kroeze C, Slomp CP. Neglecting sinks for N2O at the earth’s surface: does it matter? [J]. J Integr Environ Sci, 2010, 7 (S1): 79-87 4 Chèneby D, Hartmann A, Hénault C, Topp E, Germon JC. Diversity of denitrifying microflora and ability to reduce N2O in two soils [J]. Biol Fert Soils, 1998, 28 (1): 19-26 5 Fernandes SO, Bharathi PAL, Bonin PC, Michotey VD. Denitrification: an important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India) [J]. J Environ Qual, 2010, 39 (4): 1507-1516 6 Wang C, Zhu G, Wang Y, Wang S, Yin C. Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake [J]. J Environ Sci, 2013, 25 (1): 44-52 7 Domeignozhorta-horta LA, Spor A, Bru D, Breuil MC, Bizouard F, Leonard J, Philippot L. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system [J]. Front Microbiol, 2015, 6 (971): 971 8 Saarenheimo J, Rissanen AJ, Arvola L, Nykanen H, Lehmann MF, Tiirola M. Genetic and environmental controls on nitrous oxide accumulation in lakes [J]. PLoS ONE, 2015, 10 (3): e0121201 9 Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, Rodríguez G, Massol-Deyá A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, L?f?er FE. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils [J]. PNAS, 2012, 109 (48): 19709-19714 10 Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford R, Ritalahti K, L?f?er FE, Konstantinidis KT. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle [J]. mBio, 2014, 5 (3): e01193-14 11 Jones CM, Graf DR, Bru D, Philippot L, Hallin S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink [J]. ISME J, 2013, 7 (2): 417-426 12 Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program [J]. Bioinformatics, 2010, 26 (15): 1899-1900 13 Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, L?Bmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH. ARB: a software environment for sequence data [J]. Nucl Acid Res, 2004, 32 (4): 1363-1371 14 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models [M]. Bioinformatics, 2006, 22 (21): 2688-2690 15 Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. Combined prediction of Tat and Sec signal peptides with hidden Markov models [J]. Bioinformatics, 2010, 26 (22): 2811-2817 16 Yoon S, Nissen S, Park D, Sanford RA, Loffler FE. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ [J]. Appl Environ Microbiol, 2016, 82 (13): 3793-3800 17 Yoon S, Cruz-Garcia C, Sanford R, Ritalahti KM, Loffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4 [J]. ISME J, 2014, 9 (5): 1093-1104 18 Sander R. Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry (version 3) [J]. Estuarine Coast Shelf Sci, 1999, 115 (1): 63-74 19 Hermann C, Dewes I, Schumpe A. The estimation of gas solubilities in salt solutions [J]. Chem Eng Sci, 1995, 50 (10): 1673-1675 20 Schumpe A, Quicker G, Decker WD. Gas solubilities in microbial culture media [J]. Adv Biochem Eng, 1982, 24: 1-38 21 Yoon S, Sanford R, L?ffler FE. Nitrite control over dissimilatory nitrate/nitrite reduction pathways in Shewanella loihica strain PV-4 [J]. Appl Environ Microbiol, 2015, 81 (10): 3510-3517 22 Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences [J]. Nucl Acid Res, 1998, 26 (7): 1628-1635 23 López-gutierrez JC, Henry S, Hallet S, Martin-laurent F, Catroux C, Philippot L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR [J]. J Microbiol Methods, 2004, 57 (3): 399-407 24 Samad MS, Biswas A, Bakken LR, Clough TJ, Deklein CA, Richards KG,Lanigan GJ, Morales SE. Phylogenetic and functional potential links pH and N2O emissions in pasture soils [J]. Sci Rep, 2016, 6: 35990 25 Wittorf L, Bonilla-rosso G, Jones CM, Backman O, Hulth S, Hallin S. Habitat partitioning of marine benthic denitrifier communities in response to oxygen availability [J]. Environ Microbiol Rep, 2016, 8 (4): 486-492 26 Domeignoz-horta LA, Philippot L, Peyrard C, Bru D, Breuil MC, Bizouard F, Justes E, Mary B, Leonard J, Spor A. Peaks of in situ N2O emissions are influenced by N2O producing and reducing microbial communities across arable soils [J]. Global Change Biol, 2018, 24 (1): 360 27 Jones CM, Hallin S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities [J]. ISME J, 2010, 4 (5): 633-641 28 Enwall K, Stenberg M, Hallin S. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management [J]. Appl Environ Microbiol, 2010, 76 (7): 2243-2250 29 Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L. Recently identified microbial guild mediates soil N2O sink capacity [J]. Nat Clim Change, 2014, 4 (9): 801-805 30 Lang E, Lapidus A, Chertkov O, Brettin T, Detter JC, Han C, Copeland A, Del-Rio TG, Nolan M, Chen F, Lucas S, Tice H, Cheng JF, Land M, Hauser L, Chang YJ, Jeffries CD, Kopitz M, Bruce D, Goodwin L, Pitluck S, Ovchinnikova G, Pati A, Ivanova N, Mavrommatis K, Chen A, Palaniappan K, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, G?ker M, Rohde M, Kyrpides NC, Klenk HP. Complete genome sequence of Dyadobacter fermentans type strain (NS114 T ) [J]. Standard Gen Sci, 2009, 1 (2): 133-140 31 Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions [J]. PLoS ONE, 2014, 9 (12): e114118 32 Domeignoz-horta LA, Putz M, Spor A, Bru D, Breuil MC, Hallin S. Non-denitrifying nitrous oxide-reducing bacteria - an effective N2O sink in soil [J]. Soil Biol Biochem, 2016, 103: 376-379 33 Sutton MA, Oenema O, Erisman JW, Leip A, Grinsven HV, Winiwarter W. Too much of a good thing [J]. Nature, 2011, 472 (7342): 159-161 34 Graf DR, Zhao M, Jones CM, Hallin S. Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils [J]. Soil Biol Biochem, 2016, 100: 125-128 35 Herbert-Jr RB, Winbjork H, Hellman M, Hallin S. Nitrogen removal and spatial distribution of denitrifier and anammox communities in a bioreactor for mine drainage treatment [J]. Water Res, 2014, 66 (66): 350-360 36 Saarenheimo J, Aalto SL, Rissanen AJ, Tiirola M. Microbial community response on wastewater discharge in Boreal Lake sediments [J]. Front Microbiol, 2017, 8: 750 37 Highton MP, Roosa S, Crawshaw J, Schallenberg M, Morales SE. Physical factors correlate to microbial community structure and nitrogen cycling gene abundance in a nitrate fed eutrophic lagoon [J]. Front Microbiol, 2016, 7: 1691 38 Hallin S, Hellman M, Choudhury MI, Ecke F. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands [J]. Water Res, 2015, 85: 377-383