|本期目录/Table of Contents|

[1]刘春梅,魏文学,盛荣,等.氧化亚氮还原酶基因nosZII及与环境的关系研究进展[J].应用与环境生物学报,2018,24(03):651-656.[doi:10.19675/j.cnki.1006-687x.2017.08016]
 LIU Chunmei,WEI Wenxue**,et al.Research progress of nitrous oxide reductase gene (nosZII) and its relationship with the environment[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):651-656.[doi:10.19675/j.cnki.1006-687x.2017.08016]
点击复制

氧化亚氮还原酶基因nosZII及与环境的关系研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
651-656
栏目:
综述
出版日期:
2018-06-30

文章信息/Info

Title:
Research progress of nitrous oxide reductase gene (nosZII) and its relationship with the environment
作者:
刘春梅魏文学盛荣邢肖毅谌星
1中国科学院亚热带农业生态研究所 长沙 410000 2中国科学院大学 北京 100049
Author(s):
LIU Chunmei1 2 WEI Wenxue1** SHENG Rong1 XING Xiaoyi1 2 & CHEN Xing1 2
1 Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410000, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
nosZII基因nosZI基因N2ORN2O还原能力群落结构
Keywords:
nosZII gene nosZI gene N2OR N2O-reducing ability community structure
分类号:
Q753 : Q938.1
DOI:
10.19675/j.cnki.1006-687x.2017.08016
摘要:
温室效应在全球范围内日趋严重. 其中氧化亚氮(N2O)作为最重要的温室气体之一,增温潜能是二氧化碳(CO2)的298倍,且其浓度仍呈逐年上升趋势. 氧化亚氮还原酶(N2OR)能将N2O还原成氮气(N2),而nosZ基因是编码N2OR的唯一基因. 除了熟知的nosZI基因外,新发现的分支nosZII基因也能编码N2OR. 在国内外研究基础上本文总结nosZII基因的基本概况,分析其与nosZI的主要区别,阐述其相关反应机制,并归纳不同环境因素对nosZII基因表达的影响. 研究表明,nosZII主要存在于ε-变形细菌、拟杆菌、产水菌中,含nosZII的微生物中有部分种群缺乏nirS和nirK基因,且该类微生物在还原N2O功能上具有较大潜能. 影响含nosZII微生物的丰度和种群结构的环境因子较多,主要包括土壤结构、土壤pH值、土壤C/N、温度、湖泊物理梯度等,其中pH值和C/N可能是主要的影响因素. 随着分子生物技术手段的进步,对含nosZII微生物的生态功能的探索已取得了重要进展,但还需进一步深入. 今后还需对含nosZII的微生物群落结构特征、微生物丰度和多样性影响因素以及对具有较强还原N2O能力的含nosZII菌株进行更深入的研究,为降低N2O排放、有效减控温室气体提供理论依据. (图1 表1 参38)
Abstract:
The greenhouse effect has become increasingly serious globally. Nitrous oxide (N2O) is both the major ozone depleting substance and a potent greenhouse gas having a global warming potential 298 times that of CO2, and the N2O concentration is still increasing at an annual rate of about 0.8 × 10-9. Nitrous oxide reductase (N2OR) can reduce N2O to N2, and until recently, the nosZ gene was the only gene known to be able to encode N2OR. Besides the well-known nosZI, a new lineage of the N2O-reductase (nosZ clade II), which is abundant and widespread in soils, has been identified. In this paper, the main characters of nosZII-containing microbial communities and the related working mechanisms are summarized. In addition to the main differences between nosZI and nosZII, the important environmental factors that regulate the composition, abundance, and expression of nosZII-containing communities are also discussed in this paper. Studies have shown that nosZII communities are distributed among a diverse range of bacterial and archaeal phyla, such as Epsilon-proteobacteria, Bacteroidetes, and Aquificae. Interestingly, most of the nosZII microbes lack a nitrite reductase encoding gene (nirS or nirK) and are therefore unable to denitrify, indicating the importance of these communities as N2O sinks. Soil properties such as texture, pH, C/N ratio, temperature, and lake physical gradient could regulate nosZII microbe abundance and diversity, and the pH and C/N ratio may be the most important influencing factors. Studies on the ecological function of nosZII microbes have advanced considerably with the development of molecular biology technology. However, further studies on the community structure of nosZII microbes, the influencing factors of nosZII microbe abundance and diversity, and characteristics of nosZII strains with strong N2O reducing ability are needed. We hope to provide a theoretical basis that can be used to facilitate N2O reduction and relieve the greenhouse gas problem.

参考文献/References:

1 Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century [J]. Science, 2009, 326 (5949): 123-125
2 Hofmann DJ, Butler JH, Dlugokencky EJ, Elkins JW, Masarie K, Montzka SA, Tans P. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the annual greenhouse gas index [J]. Tellus Ser B Chem Phys Meteorol, 2010, 58 (5): 614-619
3 Syakila A, Kroeze C, Slomp CP. Neglecting sinks for N2O at the earth’s surface: does it matter? [J]. J Integr Environ Sci, 2010, 7 (S1): 79-87
4 Chèneby D, Hartmann A, Hénault C, Topp E, Germon JC. Diversity of denitrifying microflora and ability to reduce N2O in two soils [J]. Biol Fert Soils, 1998, 28 (1): 19-26
5 Fernandes SO, Bharathi PAL, Bonin PC, Michotey VD. Denitrification: an important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India) [J]. J Environ Qual, 2010, 39 (4): 1507-1516
6 Wang C, Zhu G, Wang Y, Wang S, Yin C. Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake [J]. J Environ Sci, 2013, 25 (1): 44-52
7 Domeignozhorta-horta LA, Spor A, Bru D, Breuil MC, Bizouard F, Leonard J, Philippot L. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system [J]. Front Microbiol, 2015, 6 (971): 971
8 Saarenheimo J, Rissanen AJ, Arvola L, Nykanen H, Lehmann MF, Tiirola M. Genetic and environmental controls on nitrous oxide accumulation in lakes [J]. PLoS ONE, 2015, 10 (3): e0121201
9 Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, Rodríguez G, Massol-Deyá A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, L?f?er FE. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils [J]. PNAS, 2012, 109 (48): 19709-19714
10 Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford R, Ritalahti K, L?f?er FE, Konstantinidis KT. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle [J]. mBio, 2014, 5 (3): e01193-14
11 Jones CM, Graf DR, Bru D, Philippot L, Hallin S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink [J]. ISME J, 2013, 7 (2): 417-426
12 Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program [J]. Bioinformatics, 2010, 26 (15): 1899-1900
13 Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, L?Bmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH. ARB: a software environment for sequence data [J]. Nucl Acid Res, 2004, 32 (4): 1363-1371
14 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models [M]. Bioinformatics, 2006, 22 (21): 2688-2690
15 Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. Combined prediction of Tat and Sec signal peptides with hidden Markov models [J]. Bioinformatics, 2010, 26 (22): 2811-2817
16 Yoon S, Nissen S, Park D, Sanford RA, Loffler FE. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ [J]. Appl Environ Microbiol, 2016, 82 (13): 3793-3800
17 Yoon S, Cruz-Garcia C, Sanford R, Ritalahti KM, Loffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4 [J]. ISME J, 2014, 9 (5): 1093-1104
18 Sander R. Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry (version 3) [J]. Estuarine Coast Shelf Sci, 1999, 115 (1): 63-74
19 Hermann C, Dewes I, Schumpe A. The estimation of gas solubilities in salt solutions [J]. Chem Eng Sci, 1995, 50 (10): 1673-1675
20 Schumpe A, Quicker G, Decker WD. Gas solubilities in microbial culture media [J]. Adv Biochem Eng, 1982, 24: 1-38
21 Yoon S, Sanford R, L?ffler FE. Nitrite control over dissimilatory nitrate/nitrite reduction pathways in Shewanella loihica strain PV-4 [J]. Appl Environ Microbiol, 2015, 81 (10): 3510-3517
22 Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences [J]. Nucl Acid Res, 1998, 26 (7): 1628-1635
23 López-gutierrez JC, Henry S, Hallet S, Martin-laurent F, Catroux C, Philippot L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR [J]. J Microbiol Methods, 2004, 57 (3): 399-407
24 Samad MS, Biswas A, Bakken LR, Clough TJ, Deklein CA, Richards KG,Lanigan GJ, Morales SE. Phylogenetic and functional potential links pH and N2O emissions in pasture soils [J]. Sci Rep, 2016, 6: 35990
25 Wittorf L, Bonilla-rosso G, Jones CM, Backman O, Hulth S, Hallin S. Habitat partitioning of marine benthic denitrifier communities in response to oxygen availability [J]. Environ Microbiol Rep, 2016, 8 (4): 486-492
26 Domeignoz-horta LA, Philippot L, Peyrard C, Bru D, Breuil MC, Bizouard F, Justes E, Mary B, Leonard J, Spor A. Peaks of in situ N2O emissions are influenced by N2O producing and reducing microbial communities across arable soils [J]. Global Change Biol, 2018, 24 (1): 360
27 Jones CM, Hallin S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities [J]. ISME J, 2010, 4 (5): 633-641
28 Enwall K, Stenberg M, Hallin S. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management [J]. Appl Environ Microbiol, 2010, 76 (7): 2243-2250
29 Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L. Recently identified microbial guild mediates soil N2O sink capacity [J]. Nat Clim Change, 2014, 4 (9): 801-805
30 Lang E, Lapidus A, Chertkov O, Brettin T, Detter JC, Han C, Copeland A, Del-Rio TG, Nolan M, Chen F, Lucas S, Tice H, Cheng JF, Land M, Hauser L, Chang YJ, Jeffries CD, Kopitz M, Bruce D, Goodwin L, Pitluck S, Ovchinnikova G, Pati A, Ivanova N, Mavrommatis K, Chen A, Palaniappan K, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, G?ker M, Rohde M, Kyrpides NC, Klenk HP. Complete genome sequence of Dyadobacter fermentans type strain (NS114 T ) [J]. Standard Gen Sci, 2009, 1 (2): 133-140
31 Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions [J]. PLoS ONE, 2014, 9 (12): e114118
32 Domeignoz-horta LA, Putz M, Spor A, Bru D, Breuil MC, Hallin S. Non-denitrifying nitrous oxide-reducing bacteria - an effective N2O sink in soil [J]. Soil Biol Biochem, 2016, 103: 376-379
33 Sutton MA, Oenema O, Erisman JW, Leip A, Grinsven HV, Winiwarter W. Too much of a good thing [J]. Nature, 2011, 472 (7342): 159-161
34 Graf DR, Zhao M, Jones CM, Hallin S. Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils [J]. Soil Biol Biochem, 2016, 100: 125-128
35 Herbert-Jr RB, Winbjork H, Hellman M, Hallin S. Nitrogen removal and spatial distribution of denitrifier and anammox communities in a bioreactor for mine drainage treatment [J]. Water Res, 2014, 66 (66): 350-360
36 Saarenheimo J, Aalto SL, Rissanen AJ, Tiirola M. Microbial community response on wastewater discharge in Boreal Lake sediments [J]. Front Microbiol, 2017, 8: 750
37 Highton MP, Roosa S, Crawshaw J, Schallenberg M, Morales SE. Physical factors correlate to microbial community structure and nitrogen cycling gene abundance in a nitrate fed eutrophic lagoon [J]. Front Microbiol, 2016, 7: 1691
38 Hallin S, Hellman M, Choudhury MI, Ecke F. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands [J]. Water Res, 2015, 85: 377-383

更新日期/Last Update: 2018-06-30