1 Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells [J]. Nucleic Acids Res, 1995, 23 (24): 5012-5109 2 Zhang F, Maeder ML, Ungerwallace E, Hoshaw JP, Reyon, D, Christian M. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases [J]. PNAS, 2010, 107 (26): 12028-12033 3 Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases [J]. Nature, 2005, 435 (7042): 646 4 Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ. An improved zinc-finger nuclease architecture for highly specific genome editing [J]. Nat Biotechnol, 2007, 25 (7): 778-785 5 Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases [J]. Genetics, 2010, 186 (2): 757-761 6 曾秀英, 侯学文. CRISPR/Cas9基因组编辑技术在植物基因功能研究及植物改良中的应用[J]. 植物生理学报, 2015 (9): 1351-1358 [Zeng XY, Hou XW. Application of CRISPR/Cas9 genome editing technology in functional genomics and improvement of plants [J]. Plant Physiol J, 2015 (9): 1351-1358] 7 Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering [J]. Trends Biotechnol, 2013, 31 (7): 397-405 8 Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product [J]. J Bacteriol, 1987, 169 (12): 5429-5433 9 Mojica VC, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria (letter) [J]. Mol Microbiol, 2000, 36 (1): 244-246 10 Ruud J, Embden JDAV, Wim G, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43 (6): 1565-1575 11 郑小梅, 张晓立, 于建东, 郑平, 孙际宾. CRISPR-Cas9介导的基因组编辑技术的研究进展[J]. 生物技术进展, 2015 (1): 1-9 [Zheng XM, Zhang XL, Yu JD, Zheng P, Sun JB. CRISPR-Cas9 -based genome engineering [J]. Curr Biotechnol, 2015 (1): 1-9] 12 Mojica FJM, Díez-Villase?or C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements [J]. J Mol Evol, 2005, 60 (2): 174-182 13 Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [J]. Microbiology, 2005, 151 (3): 653-63 14 Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J]. Microbiology, 2005, 151 (8): 2551-2561 15 Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action [J]. Biol Direct, 2006, 1 (1): 7 16 刘志国. CRISPR/Cas9系统介导基因组编辑的研究进展[J]. 畜牧兽医学报, 2014, 45 (10): 1567-1583 [Liu ZG. Research progress on CRISPR/Cas9 mediated genome editing [J]. Acta Veter Zootech Sin, 2014, 45 (10): 1567-1583] 17 Barrangou R, Fremaux C, Deveau H, Richards M, BoyavalP, Moineau S, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315 (5819): 1709-1712 18 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337 (6096): 816-821 19 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339 (6121): 819-823 20 Richter H, Randau L, Plagens A. Exploiting CRISPR/Cas: interference mechanisms and applications [J]. Int J Mol Sci, 2013, 14 (7): 14518-14531 21 Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J]. Microbiology, 2009, 155 (3): 733-740 22 Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. PNAS, 2012, 109 (39): E2579-E2586 23 李聪, 曹文广. CRISPR/Cas9介导的基因编辑技术研究进展[J]. 生物工程学报, 2015, 31 (11): 1531-1542 [Li C, Cao WG. Advances in CRISPR/Cas9-mediated gene editing [J]. Chin J Biotechnol, 2015, 31 (11): 1531-1542] 24 Ruud J, Embden, JDAV, Wim G, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43 (6): 1565-75 25 Gilles V, Ibtissem G, Christine P. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats [J]. Bmc Bioinformatics, 2007, 8 (1): 172 26 瞿礼嘉, 郭冬姝, 张金喆, 秦跟基. CRISPR/Cas系统在植物基因组编辑中的应用[J]. 生命科学, 2015 (1): 64-70 [Qu LJ, Guo DS, Zhang JZ, Qin GJ. The application of CRISPR/Cas system in plant genome editing [J]. Chin Bull Life Sci, 2015 (1): 64-70] 27 Mojica FJ, D??Ez-Villase?±Or C, Garc??A-Mart??Nez J. Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J]. Microbiology, 2009, 155(3):733-740 28 Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Van Der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes [J]. Science, 2008, 321 (5891): 960-964 29 Pougach K, Semenova E, Bogdanova E, DatsenkoK A, Djordjevic M, Wanner B L, Severinov K. Transcription, processing and function of CRISPR cassettes in Escherichia coli [J]. Mol Microbiol, 2010, 77 (6): 1367-1379 30 Pul ?, Wurm R, Arslan Z, Gei?en R, Hofmann N, Wagner R. Identification and characterization of E. coli CRISPR‐cas promoters and their silencing by H‐NS [J]. Mol Microbiol, 2010, 75 (6): 1495-1512 31 Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A. Transcription profile of Thermus thermophilus CRISPR systems after phage infection [J]. J Mol Biol, 2010, 395 (2): 270-281 32 Hale C, Kleppe K, Terns RM, Terns MP. Prokaryotic silencing (psi) RNAs in pyrococcus furiosus [J]. Rna, 2008, 14 (12): 2572-2579 33 Lillestol RK, Shah SA, Brügger K, Redder P. Phan H, Christiansen J, Garrett RA. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties [J]. Mol microbiol, 2009, 72 (1): 259-272 34 Deltcheva E, Chylinski K, Sharm, CM, Gonzales K, Chao Y, Pirzada ZA, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J]. Nature, 2011, 471 (7340): 602-607 35 Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315 (5819): 1709-1712 36 Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Moineau S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus [J]. J Bacteriol, 2008, 190 (4): 1390-1400 37 Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, BarendregtA, Doudna JA. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions [J]. PNAS, 2011, 108 (25): 10092-10097 38 Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468 (7320): 67 39 Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae [J]. FEMS Microbiol Lett, 2009, 296 (1): 110-116 40 Li JF, Norville JE, Aach J, McCormack M, Zhang D, BushJ,Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nat Biotechnol, 2013, 31 (8): 688-691 41 Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. Application of the CRISPR–Cas system for efficient genome engineering in plants [J]. Mol Plant, 2013, 6 (6): 2008 42 Jiang W, Zhou H, BiH, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice [J]. NAR, 2013, 41 (20): e188 43 Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell Res, 2013, 23 (10): 1229 44 Fauser F, Schiml S, Puchta H. Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana [J]. Plant J, 2014, 79 (2): 348-359 45 Schiml S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny [J]. Plant J, 2014, 80 (6): 1139-1150 46 Jiang W, Yang B, Weeks D P. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations [J]. PLoS ONE, 2014, 9 (6): e99225 47 Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Xie Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol Plant, 2015, 8 (8): 1274-1284 48 Nekrasov V, Staskawicz B, Weigel D, Jones JD. KamounS. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease [J]. Nat Biotech, 2013, 31 (8): 691-693 49 Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat [J]. G3 Genes Genomes Genetics, 2013, 3 (12): 2233-2238 50 Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum [J]. Plant Mol Biol, 2015, 87 (1-2): 99-110 51 孙现军. CRISPR/Cas9基因定点突变体系构建与大豆抗旱相关gma-miR160功能研究[D]. 杨凌: 西北农林科技大学, 2015 [Sun XJ. Construction of CRISPR/Cas9 site-directed mutagenesis system and fuctional research of drought-responsive soybean gma-miR160 [D] Yangling: Northwest A&F University, 2015] 52 Jacobs TB, Lafayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9 [J]. Bmc Biotechnol, 2015, 15 (1): 1-10 53 蔡宇鹏. CRISPR/Cas9介导的大豆基因组定点编辑研究[D]. 北京: 中国农业科学院, 2016 [Cai YP. CRISPR/Cas9-mediated genome editing in soybean [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016 ] 54 Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system [J]. Plant Physiol, 2014, 166 (3): 1292-1297 55 Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K , Federici F. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model [J]. Plant Physiol, 2014, 166 (2): 455-469 56 Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening [J]. Biochem.Biophys Res Commu, 2015, 467 (1): 76-82 57 Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system [J]. Plant Cell Rep, 2015, 34 (9): 1473-1476 58 Zhou H, Liu B, Weeks D P, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice [J]. NAR, 2014, 42 (17): 10903-10914 59 Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X,Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system [J]. Cell Res, 2013, 23 (10): 1233 60 Li J, Zhang Y, Chen K, Liang, Z. Targeted genome modification of crop plants using a CRISPR-Cas system [J]. Nat Biotechnol, 2013, 31 (8): 686-688 61 Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation [J]. Plant Biotechnol J, 2014, 12 (6): 797-807 62 Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice [J]. Rice, 2014, 7 (1): 5 63 Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system [J]. Nat Protoc, 2014, 9 (10): 2395-2410 64 Endo M, Mikami M, Toki S. Bi-allelic gene targeting in rice [J]. Plant Physiol, 2016, 170 (2): 667-677 65 Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Xia L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol Plant, 2016, 9 (4): 628-631 66 Wang F, Wang C, Liu P, LeiC, Hao W, Gao Y, Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922 [J]. PLoS ONE, 2016, 11 (4): e0154027 67 Liang G, Zhang H, Lou D, Yu D. election of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing [J]. Sci Rep, 2016, 6: 21451 68 沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 浙江农业学报, 2017, 29 (2): 177-185 [Shen C. CRISPR/Cas9 editing and expression analysis of LOC_Os10g05490 in rice under cold stress [J]. Acta Agric Zhejiangensis, 2017, 29 (2): 177-185 ] 69 Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew [J]. Nat Biotechnol, 2014, 32 (9): 947-951 70 Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system [J]. J Genet Genom, 2014, 41 (2): 63-68 71 Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants [J]. BMC Plant Biol, 2014, 14 (1): 327 72 Zhang B, Yang X, Yang C, Li M, Guo Y. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia [J]. Sci Rep, 2016, 6: 20315 73 胡春华, 邓贵明, 孙晓玄, 左存武, 李春雨, 邝瑞彬,易干军. 香蕉CRISPR/Cas9基因编辑技术体系的建立[J]. 中国农业科学, 2017, 50 (7): 1294-1301 [Hu CH, Deng GM, Sun XX, Zuo CW,Li CY,Kuang RB,Yi GJ. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana [J]. Sci Agric Sin, 2017, 50 (7): 1294-1301 ] 74 Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA [J]. PLoS ONE, 2014, 9 (4): e93806 75 Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation [J]. Sci Rep, 2015, 5 76 Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Osakabe Y. Efficient genome editing in apple using a CRISPR/Cas9 system [J]. Sci Rep, 2016, 6: 31481 77 Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. [J]. Plant Cell Physiol, 2014, 55 (3): 475-481 78 Liu W, Zhu X, Lei M, Xia Q, Botella JR, Zhu JK, Mao Y. A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana [J]. Sci Bullet, 2015, 60 (15): 1332-1347 79 Hyun Y, Kim J, Cho S W, Choi Y, Kim JS, Coupland G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles [J]. Planta, 2015, 241 (1): 271-284 80 Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system [J]. Mol Plant, 2013, 6 (6): 1975-1983 81 朱金洁. CRISPR-Cas9介导的玉米基因组定点编辑研究[D]. 北京: 中国农业大学, 2015 [Zhu JJ. Targeted genome editing in maize using CRISPR-Cas9 [D]. Beijing: China Agricultural University, 2015]
[1]邓名 丁俊美**.【综述】CRISPR/Cas9基因编辑技术在微生物细胞中的应用研究进展[J].应用与环境生物学报,2022,28(03):1.[doi:10.19675/j.cnki.1006-687x.2021.03016]
DENG Ming & DING Junmei**.Application progress of genome editing technology CRISPR/Cas9 in microbial cells[J].Chinese Journal of Applied & Environmental Biology,2022,28(03):1.[doi:10.19675/j.cnki.1006-687x.2021.03016]