|本期目录/Table of Contents|

[1]董婧,刘永胜,唐维.中华猕猴桃(Actinidia chinensis Planch)果实香气成分及相关基因表达[J].应用与环境生物学报,2018,24(02):307-314.[doi:10.19675/j.cnki.1006-687x.2017.05044]
 DONG Jing,LIU Yongsheng,TANG Wei,et al.Volatile components and their corresponding synthetic gene expression profile in the fruits of Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):307-314.[doi:10.19675/j.cnki.1006-687x.2017.05044]
点击复制

中华猕猴桃(Actinidia chinensis Planch)果实香气成分及相关基因表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
307-314
栏目:
研究论文
出版日期:
2018-04-25

文章信息/Info

Title:
Volatile components and their corresponding synthetic gene expression profile in the fruits of Actinidia chinensis
作者:
董婧刘永胜唐维
1四川大学生命科学学院,生物资源与生态环境教育部重点实验室,水力学与山区河流工程国家重点实验室 成都 610064 2合肥工业大学生物技术与食品工程学院 合肥 230009
Author(s):
DONG Jing LIU Yongsheng TANG Wei
1 Key Laboratory of Ministry of Education for Bio-resource and Eco-environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China 2 School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
关键词:
中华猕猴桃果实香气成分顶空-固相微萃取结合气相色谱-质谱(HS-SPME/GC-MS)醇酰基转移酶脂氧合酶萜烯合酶实时定量PCR
Keywords:
Actinidia chinensis Planch fruit volatile component HS-SPME/GC-MS acyltransferases lipoxygenase terpene synthase Real-time Quantitative PCR
分类号:
Q949.758.206 : Q786
DOI:
10.19675/j.cnki.1006-687x.2017.05044
摘要:
为了解中华猕猴桃(Actinidia chinensis Planch)不同品种果实挥发性香气成分差异及其相关生物合成基因的表达模式,采用顶空-固相微萃取结合气相色谱-质谱仪(Head Space-Solid Phase Micro Extraction/Gas Chromatography-Mass Spectrometry,HS-SPME/GC-MS)方法,分析6个品种(‘翠玉’、‘金桃’、‘金艳’、‘楚红’、‘东红’、‘西选2号’)成熟果实的挥发性香气成分组成,并通过实时定量PCR(RT-qPCR)检测醇酰基转移酶基因(AcATs16)、脂氧合酶基因(AcLox2)和萜烯合酶基因(AcTPS1)在果实后熟过程中的表达量动态变化. 在6个检测猕猴桃品种中共鉴定了92种香气化合物. ‘翠玉’、‘金桃’、‘金艳’、‘楚红’、‘东红’、‘西选2号’猕猴桃品种分别有35、32、30、44、28、17种香气成分. ‘翠玉’、‘金桃’和‘金艳’中香气成分主要是酯类化合物,‘楚红’和‘东红’的香气成分分别以醛类和萜类为主,而‘西选二号’的香气成分由醛类和萜类组成. 随着猕猴桃果实的成熟度增加,AcATs16和AcLox2的表达量先增加后降低. AcATs16的表达量在‘翠玉’、‘金艳’中显著高于其他品种,而在‘翠玉’和‘楚红’中AcLox2的表达量显著高于其他品种. AcTPS1的表达量在‘金桃’、‘东红’、‘西选2号’果实后熟过程中逐渐升高,但在‘翠玉’、‘金艳’、‘楚红’中未见表达. 本研究表明猕猴桃果实中挥发性化合物种类和相对含量不同导致了香气的差异;AcATs16、AcLox2和AcTPS1在猕猴桃后熟过程中的差异表达与香气成分的合成密切相关;结果可为猕猴桃品种识别、果实质量评价和分子辅助育种提供依据. (图1 表4 参38)
Abstract:
This study aimed to identify the difference in volatile aromatic components and the relationship with the expression pattern of their corresponding bio-synthesis genes in six kiwifruit (Actinidia chinensis) varieties (Cuiyu, Jintao, Jinyan, Chuhong, Donghong, and Xixuan). To provide a foundation for kiwifruit variety recognition, fruit quality evaluation, and molecular-assisted breeding, the volatile aromatic components in the ripe fruits of six kiwifruit varieties were evaluated by head space-solid phase micro extraction/gas chromatography-mass spectrometry. The aroma-synthesis-related genes, including acyltransferases (AcAT16), lipoxygenase (AcLox2), and terpene synthase genes (AcTPS1), were detected by the real time-quantitative polymerase chain reaction (qPCR) during the postharvest stage of fruits. Ninety-two aroma chemicals were identified in the tested kiwifruit cultivars. There were 35, 32, 30, 44, 28, and 17 of aromatic compounds in Cuiyu, Jintao, Jinyan, Chuhong, Donghong, and Xixuan, respectively. Esters were the main aroma components in Cuiyu, Jintao, and Jinyan. The major aromatic compounds of Chuhong, Donghong, and Xixuan were aldehydes and terpenoids. The expression level of AcATs16 and AcLox2 increased, and then decreased during the ripening of kiwifruit fruits. The expression of AcATs16 was significantly higher in Cuiyu and Jinyan than in other varieties. AcLox2 indicated significant abundance in Cuiyu and Chuhong. AcTPS1 was up-regulated in Jintao, Donghong, and Xixuan with fruit ripening; however, this was not observed in Cuiyu, Chuhong, and Jinyan. The difference in the composition and content of volatile aromatic components contributes to the difference in aroma in different kiwifruit cultivars. The diverse expression of AcATs16, AcLox2, and AcTPS1 might be closely related to the synthesis of ethyl butyrate, (E)-2-hexenal, and eucalyptol, respectively.

参考文献/References:

1 Young H, Paterson VJ, Burn DJW. Volatile aroma constituents of kiwifruit [J]. J Agric Food Chem, 1983, 34 (1): 81-85
2 Rassam M, Laing W. Variation in ascorbic acid and oxalate levels in the fruit of Actinidia chinensis tissues and genotypes [J]. J Agric Food Chem, 2005, 53 (23): 22-26
3 黄玉清, 陈艺欣, 田厚军. 植物香气成分提取方法的研究进展[J]. 江苏农业科学, 2012, 40 (7): 245-247 [Huang YQ, Chen XY, Tian HJ. Research progress of extraction methods for aroma components of plants [J]. Jiangsu Agric Sci, 2012, 40 (7): 245-247
4 Biniecka M, Caroli S. Analytical methods for the quantification of volatile aromatic compounds [J]. Trend Anal Chem, 2011, 30 (11): 1756-1770
5 Garcia CV, Coralia VG, Siew YQ, Ralph JS, Robert AW. Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha [J]. Food Chem, 2012, 134 (2): 655-661
6 Zhang CY, Zhang Q, Zhong CH, Guo MJ. Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography–masss pectrometry [J]. J Chromatogr A, 2016, 1440: 255-259
7 Günther CS, Marsh KB, Winz RA, Harker RF, Wohlers MW, White A, MR Goddard. The impact of cold storage and ethylene on volatile ester production and aroma perception in ‘Hort16A’ kiwifruit [J]. Food Chem, 2015, 169: 5-12
8 Mari?a J, Jorda? N, Carlos AM, Philip ES, Kevin LG. Aroma active components in aqueous kiwifruit essence and kiwifruit puree by GC-MS and multidimensional GC/GC-O [J]. J Agric Food Chem, 2002, 50 (19): 5386-5390
9 涂正顺, 李华, 李嘉瑞, 李可昌, 卢家烂. 猕猴桃品种间果香成分的GC-MS分析[J]. 西北农林科技大学学报, 2002, 30 (2): 96-100 [Tu ZS, Li H, L JR, Li KC, Lu JL. GC-MS Analysis of Fruit Fragrances in kiwifruit varieties [J]. J NW A&F Univ, 2002, 30 (2): 96-100]
10 谭皓, 廖康, 涂正顺. ‘金魁’猕猴桃发育过程中香气成分的动态变化[J]. 果树学报, 2006, 23 (2): 205-208 [Tan H, Liao K, Tu ZS. Dynamic changes of aroma components of Jin kiwifruit during fruit development [J]. J Fruit Sci, 2006, 23 (2): 205-208]
11 Wang MY, Elspeth M, Mark W, Ken M. Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’ and Actinidia chinensis‘Hort16A’ [J]. Postharv Biol Teclhnol, 2011, 59 (1): 16-24
12 辛广, 张博, 冯帆, 李铁纯, 刘长江, 许金光. 软枣猕猴桃果实香气成分分析[J]. 食品科学, 2009, 30 (4): 230-232 [Xin G, Zhang B, Feng F, Li TE, Liu CJ, Xu JG. Analysis of aromatic constituents of Actinidia arguta [J]. Food Sci, 2009, 30 (4): 230-232]
13 Zhang CY, Zhang Q, Zhong CH, Guo MQ. Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography-mass spectrometry [J]. J Chromatogr A, 2016, 1440: 255-259
14 Günther CS, Heinemann K, Laing WA, Nicolau L, Marsh KB. Ethylene-regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability in Actinidia chinensis genotypes [J]. PlantPhy, 2011, 168 (7): 629-638
15 Ross NC, Andrew PG, Elspeth AM. Analysis of expressed sequence tags fromActinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening [J]. BMC, 2008, 9 (1): 351
16 Günther CS, Chervin C, Marsh KB, Newcomb RD, Souleyre EJ. Characterisationof two alcohol acyltransferases from kiwifruit (Actinidia spp. ) reveals distinct substrate preferences [J]. Phytochemistry, 2011, 72 (8): 700-710
17 Feussner I, Wasternack C. The lipoxygenase pathway [J]. Ann Rev Plant Biol, 2002, 53: 275
18 Zhang B, Chen KS, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I. Differential expression within the LOX gene family inripening kiwifruit [J]. J Exp Bot, 2006, 57 (14): 3825-3836
19 Gilbert JM, Young H, Ball RD, Murray SH. Volatile flavor compounds affecting consumer acceptability of kiwifruit [J]. J Sens Stud, 1996, 7 (3-4): 331-332
20 涂正顺, 李华, 李嘉瑞, 李可昌, 卢家烂. 猕猴桃果实采后香气成分的变化[J]. 园艺学报, 2001, 28 (6): 512-516 [Tu ZS, Li H, Li JR, Li KC, Lu JL. Changes of post-harvest aroma components in kiwifruit [J]. Acta Horticul Sin, 2001, 28(6): 512-516]
21 Mochizuki S, Sugimoto K, Koeduka T, Matsui K. Arabidopsis lipoxygenase 2 is essential for formation of green leaf volatiles and five-carbon volatiles [J]. FEBS Press, 2016, 509 (7): 1017-1027
22 Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolismthat is highly diversified throughout the kingdom [J]. Plant J, 2011, 66 (1): 212-229
23 Hall DE, Robert JA, Keeling CI, Domanski D, Quesada AL, Jancsik S, Kuzyk MA, Hamberger B, Borchers CH, Bohlmann J. An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil [J]. Plant J, 2011, 65: 936–948
24 Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression [J]. Plant Cell, 2013, 24: 2635-2648
25 Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-Cineole [J]. Plant Phys, 2004, 135 (4): 1956-1966
26 Niels JN, Xiuyin Chen, Mindy YW, Adam JM, Ramon LP, Andrew CA, Sol AG, Ross GA. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors [J]. Plant Phys, 2015, 167 (4): 1243-1258
27 李嘉瑞, 白晋. 猕猴桃栽培与加工[M]. 上海: 上海科学技术出版社, 1988 [Li JR, Bai J. Kiwifruit Cultivation and Processing [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1988]
28 Huang SX, Ding J, Deng DJ. Draft genome of the kiwifruit Actinidia chinensis [J]. Nat Commun, 2013, 4 (4): 2640
29 Bartley JP, Schwede AM. Production of volatile compounds in ripening kiwifruit (Actinidia chinensis) [J]. J Agric Food Chem, 1989, 37 (4): 1023-1025
30 林江丽, 朱亚娟, 王金霞, 王吉德. SO2处理对新疆3种葡萄香气成分的影响[J]. 食品科学, 2016, 37 (6): 116-120 [Lin JL, Zhu YJ, Wang JX, Wang JD. Effect of SO2 treatment on aroma components of berries of three grape varieties grown in Xinjiang [J]. Food Sci, 2016, 37 (6): 116-120
31 张鹏, 王云舒, 李江阔, 颜廷才. 不同气调方式对甜樱桃贮后货架期芳香物质的影响[J]. 食品与发酵工业, 2016, 42 (6): 173-181 [Zhang P, Wang YS, Li JK, Yang TC. Effect of different atmosphere mode on aroma components of cherry during shelf life after storage [J]. Food Ferment Ind, 2016, 42 (6): 173-181]
32 于年文, 刘志, 王宏, 张秀美, 里程辉. 不同矮化砧木对“寒富”苹果果实芳香物质的影响[J]. 西北农业学报, 2014, 23 (1): 148-153 [Yu NW, Liu Z, Wang H, Zhang XM, Li CH. Effects of different dwarf rootstocks on the fruit aroma of “Hanfu”apple [J]. Acta Agric Bor-occid Sin, 2014, 23 (1): 148-153]
33 朱先波, 潘亮, 彭家清, 吴伟, 肖涛, 任小林. 武当1号猕猴桃芳香物质的研究[J]. 北方园艺, 2015, 22: 16-21 [Zhu XB, Pan L, Peng JQ, Wu W, Xiao T, Ren XL. Study on the aromatic substance of kiwifruit “Wudang 1” [J]. N Horticult, 2015, 22: 16-21
34 Edwige JFS, David RG, Ellen NF, Sakuntala K, Richard DN. An alcohol acyltransferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor [J]. FEBS Press, 2005, 272 (12): 3132-3144
35 马婷, 任亚梅, 张艳宜, 王涛, 张爽, 樊明涛. 1-MCP处理对亚特猕猴桃果实香气的影响[J]. 食品科学, 2016, 37 (2): 276-281 [Ma T, Ren YM, Zhang YY, Wang T, Zhang S, Fan MT. Effect of 1-Mcp treatment on the aroma of ‘Yate’ kiwifruit [J]. Food Sci, 2016, 37 (2): 276-281]
36 Zhang B, Yin XR, Yang SL, Ferguson IB, Chen KS. Lipoxygenase gene expression in ripening kiwifruit in relation ethylene and aroma production [J]. J Agric Food Chem, 2009, 57 (7): 2875-2881
37 Baldwin EA. Fruit flavor, volatile metabolism and consumer perceptions [M]//Knee M. Fruit Quality and Its Biological Basis. Boca Raton, FL: CRC Press LLC, 2002: 89-106
38 宋丽娟, 李雄伟, 陈琳, 柴明良, 高中山. 果实香气合成与遗传控制研究概述[J]. 果树学报, 2008, 25 (5): 708-713 [Song LJ, Li XW, Chen L, Chai ML, Gao ZS. A review on fruit aroma synthesis and it’s genetic control [J]. J Fruit Sci, 2008, 25 (5): 708-713]

相似文献/References:

[1]阳小成,王伯初,段传人,等.机械振荡对猕猴桃愈伤组织的生理效应[J].应用与环境生物学报,2002,8(01):36.
 YANG Xiaocheng,et al..Physiological effect of mechanical vibration on callus of Actinidia chinensis planch[J].Chinese Journal of Applied & Environmental Biology,2002,8(02):36.
[2]阳小成,王伯初,叶梅.不同强度的声波对猕猴桃试管苗根系发育的影响[J].应用与环境生物学报,2004,10(03):274.
 YANG Xiaocheng,et al..Effects of different sound intensities on root development of Actinidia chinensis plantlet[J].Chinese Journal of Applied & Environmental Biology,2004,10(02):274.
[3]孟蒙,唐维,刘嘉,等.基于中华猕猴桃“红阳”转录组序列开发EST-SSR分子标记[J].应用与环境生物学报,2014,20(04):564.[doi:10.3724/SP.J.1145.2013.12034]
 MENG Meng,TANG Wei,LIU Jia,et al.Development of EST-SSR markers in Actinidia chinesis cv ‘Hongyang’ based on transcriptomic sequences[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):564.[doi:10.3724/SP.J.1145.2013.12034]
[4]陈强,刘建,陈丹阳,等.中华猕猴桃EIN3/EIL转录因子家族的成员鉴定、系统进化和基因表达模式[J].应用与环境生物学报,2018,24(02):315.[doi:10.19675/j.cnki.1006-687x.2017.05006]
 CHEN Qiang,LIU Jian,CHEN Danyang,et al.Genome-wide identification, phylogenetic evolution, and gene expression pattern of EIN3/EIL transcription factors in Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):315.[doi:10.19675/j.cnki.1006-687x.2017.05006]

更新日期/Last Update: 2018-04-25