1 Barrero-Gil J, Salinas J. CBFs at the crossroads of plant hormone signaling in cold stress response [J]. Mol Plant, 2017, 10: 542-544
2 Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants [J]. Plant Sci, 2015, 236: 61-74
3 Kashyap P, Deswal R. A novel class I Chitinase from Hippophae rhamnoides: indications for participating in ICE-CBF cold stress signaling pathway [J]. Plant Sci, 2017, 259: 62-70
4 Marozsán-Tóth Z, Vashegyi I, Galiba G, Tóth B. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms [J]. J Plant Physiol, 2015, 181: 42-49
5 Medina J, Catalá R, Salinas J. The CBFs: three Arabidopsis transcription factors to cold acclimate [J]. Plant Sci, 2011, 180: 3-11
6 Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis [J]. New Phytol, 2016, 212: 345-353
7 Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev Cell, 2015, 32: 278-289
8 Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis [J]. Mol Plant, 2017, 10: 545-559
9 Zhang Z, Li J, Pan Y, Li J, zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, Yu J, Sun X, Li G, Ding Y, Ma L, Shen S, Dai L, Zhang H, Yang S, Guo Y, Li Z. Natural variation in CTB4a enhances rice adaptation to cold habitats [J]. Nature Commun, 2017, 8: 14788
10 Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53: 247-273
11 Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant [J]. PNAS, 2007, 104: 19631-19636
12 Wang SH, Blumwald E. Salt-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles [J]. Plant Cell, 2014, 26: 4875-4888
13 Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby J-P, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana [J]. Plant J, 2015, 82: 232-244
14 Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis [J]. Plant J, 2015, 84: 56-69
15 Lee HG, Seo PJ. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis [J]. Plant J, 2015, 82: 962-977
16 Lv P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence [J]. Plant J, 2014, 78: 578-590
17 Magnan F, Ranty Bt, Charpenteau M, Sotta B, Galaud J-P, Aldon D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid [J]. Plant J, 2008, 56: 575-589
18 Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels [J]. Plant, 2016, 85: 348-361
19 Fang Q, Jiang,TZ Xub LX, Liu H, Mao H, Wang XQ, Jiao B, Duan Yj, Wang Q, Dong QN, Yang L, Tian GZ, Zhang C, Zhou Y. A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis [J]. Plant Physiol Biochem, 2017, 114: 100-110
20 Barrero-Gil J, Salinas J. CBFs at the crossroads of plant hormone signaling in cold stress response [J]. Mol Plant, 2017, 10: 542-544
21 Choi SW, Lee SB, Na YJ, Jeung SG, Kim SY. Arabidopsis MAP3K16 and other salt-inducible MAP3Ks regulate ABA response redundantly [J]. Mol Cells, 2017, 40 (3): 230-242
22 Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 Kinase modulates freezing tolerance by enhancing ice1 stability in Arabidopsis [J]. Dev Cell, 2015, 32: 278-289
23 He L, Shi X, Wang Y, Guo Y, Yang K, Wang Y. Arabidopsis ANAC069 binds to C[A/G]CG[T/G] sequences to negatively regulate salt and osmotic stress tolerance [J]. Plant Mol Biol, 2017, 93: 369-387
24 Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby J-P, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana [J]. J, 2015, 82: 232-244
25 Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels [J]. Plant J, 2015, 85: 348-361
26 Tang DZ, Ade J, Frye CA, Innes RW. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein [J]. Plant J, 2005, 44 (2): 245–257
27 Satheesh V, Chidambaranathan P, Jagannadham PT, Kumar V, Jain PK, Chinnusamy V, Bhat SR, Srinivasan R. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.) [J]. Plant Signalling Behav, 2016, 11 (2): 1559-2324
28 Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR. Genome-wide insertional mutagenesis of Arabidopsis thaliana [J]. Science, 2003, 301: 653-657
29 Li YX, Deng H, Miao M, Li HR, Huang SX, Wang SH, Liu YS. Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes [J]. New Phytol, 2016, 210: 208-226
30 Xiao J, Li CH, Xu SJ, Xing LJ, Xu YY, Chong K. JACALIN-LECTIN LIKE1 regulates the nuclear accumulation of GLYCINE-RICH RNA-BINDING PROTINE7, influencing the RNA processing of FLOWERING LOCUS C antisense transcripts and flowering time in Arabidopsis [J]. Plant Physiol, 2015, 169: 2102-2117
31 Yoo S-D, Cho Y-H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis [J]. Nature Prot, 2007, 2: 1565-1572
32 Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response [J]. Mol Cell, 2017, 66: 117-128
33 ?rvar BL, Sangwan V, Omann F, Dhindsa RS. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity [J]. Plant J, 2000, 23: 785-794
34 Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species [J]. Plant Physiol, 2008, 149: 1141-1153
35 Zhao F, Song CP, He J, Zhu H. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities [J]. Plant Physiol, 2007, 145: 1061-1072
[1]赵昕,盛芬玲,赵敏桂,等.NaCl胁迫下盐芥和拟南芥化合物含量与蛋白质结构变化比较——傅立叶红外光谱法[J].应用与环境生物学报,2008,14(03):371.
ZHAO Xin,et al..Effects of Salt Stress on Chemical Composition and Protein Conformation Changes in Thellungiella and Arabidopsis Seedlings[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):371.
[2]王爱萍,景蕊莲,杨武德,等.小麦TaMyb2基因转化拟南芥表达载体的构建与遗传转化[J].应用与环境生物学报,2008,14(06):750.[doi:10.3724/SP.J.1145.2008.00750]
WANG Aiping,JING Ruilian**,et al.Construction and Genetic Transformation of Arabidopsis thaliana Expression Vector of Wheat TaMyb2[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):750.[doi:10.3724/SP.J.1145.2008.00750]
[3]李利红,仪慧兰,武冬梅.二氧化硫胁迫诱发拟南芥植株含硫抗氧化物水平提高[J].应用与环境生物学报,2010,16(05):613.[doi:10.3724/SP.J.1145.2010.00613]
LI Lihong,YI Huilan,WU Dongmei.Enhancement of Sulfur-containing Antioxidants in Arabidopsis Response to Sulfur Dioxide Fumigation[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):613.[doi:10.3724/SP.J.1145.2010.00613]
[4]程涛,杨建明,刘辉,等.拟南芥硫酯酶基因(atfata)在大肠杆菌中的表达及其对游离脂肪酸合成的影响[J].应用与环境生物学报,2011,17(04):568.[doi:10.3724/SP.J.1145.2011.00568]
CHENG Tao,YANG Jianming,LIU Hui,et al.Expression of Arabidopsis thaliana Thioesterase Gene (atfata) in Escherichia coli and Its Influence on Biosynthesis of Free Fatty Acid[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):568.[doi:10.3724/SP.J.1145.2011.00568]
[5]马磊,张翔,田永强,等.拟南芥基因组中注释为异胡豆苷合成酶的基因克隆及异源表达[J].应用与环境生物学报,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
MA Lei,ZHANG Xiang,TIAN Yongqiang,et al.Molecular Cloning and Heterologous Expression of Putative Strictosidine Synthases from Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
[6]侯佩,冯媛媛,余桂容,等.拟南芥XERICO基因诱导表达提高转基因植物的耐旱性[J].应用与环境生物学报,2013,19(06):969.[doi:10.3724/SP.J.1145.2013.00969]
HOU Pei,FENG Yuanyuan,YU Guirong,et al.Improved Drought Tolerance of Transgenic Arabidopsis thaliana by Inducible Expression of XERICO Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):969.[doi:10.3724/SP.J.1145.2013.00969]
[7]陈杰,许长征,曹颖倩,等.不同重金属对拟南芥根系特征的影响比较[J].应用与环境生物学报,2017,23(06):1122.[doi:10.3724/SP.J.1145.2017.03003]
CHEN Jie,XU Changzheng,CAO Yingqian,et al.Heavy-metal-induced morphological changes of root characteristics in Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):1122.[doi:10.3724/SP.J.1145.2017.03003]
[8]常斐斐,曹曦跃,彭婕,等.褪黑素诱导拟南芥抗芸薹根肿菌[J].应用与环境生物学报,2018,24(01):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
CHANG Feifei,CAO Xiyue,PENG Jie,et al.Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]