|本期目录/Table of Contents|

[1]邹婷,刘唤唤,刘永胜,等.拟南芥新基因SI(stress insensitive)参与非生物胁迫应答[J].应用与环境生物学报,2018,24(02):328-334.[doi:10.19675/j.cnki.1006-687x.2017.05043]
 ZOU Ting,LIU Huanhuan,LIU Yongsheng,et al.A novel gene SI (stress insensitive) is involved in the response to abiotic stress in Arabidopsis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):328-334.[doi:10.19675/j.cnki.1006-687x.2017.05043]
点击复制

拟南芥新基因SI(stress insensitive)参与非生物胁迫应答()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
328-334
栏目:
研究论文
出版日期:
2018-04-25

文章信息/Info

Title:
A novel gene SI (stress insensitive) is involved in the response to abiotic stress in Arabidopsis
作者:
邹婷刘唤唤刘永胜汪松虎
1 四川大学生命科学学院生物资源与生态环境教育部重点实验室,水利学与山区河流工程国家重点实验室 成都 6100642 中国科学院成都生物研究所 成都 6100413 中国科学院东南亚生物多样性研究中心 缅甸内比都 05282
Author(s):
ZOU Ting LIU Huanhuan LIU Yongsheng WANG Songhu
1Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China3 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar
关键词:
拟南芥DUF1336瞬时转化脱落酸(ABA)非生物胁迫
Keywords:
Arabidopsis DUF1336 transient expression abscisic acid (ABA) abiotic stress
分类号:
Q945.78 : Q786
DOI:
10.19675/j.cnki.1006-687x.2017.05043
摘要:
非生物胁迫是影响农作物产量的主要因素,植物对非生物胁迫的应答机制一直是植物学研究的热点之一. 在拟南芥中克隆和鉴定了一个参与非生物胁应答的新基因SI(stress insensitive),该基因编码一个未知功能结构域的蛋白DUF1336,该家族蛋白结构域具有许多未知功能的假设植物蛋白C末端(约250个残基). 在单子叶植物和双子叶植物中,SI蛋白质是保守的. 通过瞬时转化实验证明,该蛋白定位于细胞质膜. 实时定量PCR分析结果显示,SI基因在各种组织中组成型表达. 在花、果荚和种子中表达量相对较高. 非生物胁迫和脱落酸(ABA)可以增加SI基因的表达,SI基因在ABA、NaCl和冷处理后分别上调3.5倍、2.1倍和4.7倍. SI基因的T-DNA插入突变体(SALK_021811C)植株表现出对冷胁迫和高盐胁迫的抗性. 种子的萌发实验也表明,突变体种子可以在高盐胁迫条件下萌发,对ABA的抑制作用也不敏感. 本研究表明SI基因是植物抗逆性的负调控因子,可为提高农作物的遗传改良提供新的候选基因. (图5 参35)
Abstract:
Abiotic stresses are a major cause of loss of crop yield. The adaptation of plants to abiotic stress has been always a hotspot of botanical research. In this study, we cloned and characterized a novel gene SI (stress insensitive) involved in the response to abiotic stress in Arabidopsis. The SI protein has a new domain called DUF1336, and this family represents the C-terminus (approximately 250 residues) of a number of hypothetical plant proteins of unknown function. Furthermore, the SI protein is conserved among monocots and dicots. The subcellular localization analysis showed that the SI protein is localized in the plasma membrane. The quantitative RT-PCR analysis showed that the SI gene is constitutively expressed in various tissues. The expression of SI was relatively high in flowers, siliques, and seeds. Abiotic stress and abscisic acid (ABA) treatment can enhance the expression of SI gene, and SI transcripts were upregulated under ABA, NaCl, and cold treatments by 3.5, 2.1, and 4.7 folds, respectively. The T-DNA insertion mutant of SI gene (SALK 021811C) showed increased tolerance to cold and salt stresses. In addition, the seed germination experiments indicated that the seeds of SI mutant were insensitive to salt stress and ABA treatment. In conclusion, the results demonstrate that the SI gene plays a negative role in the tolerance of plants to abiotic stress and is a good candidate gene for genetic engineering to increase the tolerance of crop to abiotic stress.

参考文献/References:

1 Barrero-Gil J, Salinas J. CBFs at the crossroads of plant hormone signaling in cold stress response [J]. Mol Plant, 2017, 10: 542-544
2 Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants [J]. Plant Sci, 2015, 236: 61-74
3 Kashyap P, Deswal R. A novel class I Chitinase from Hippophae rhamnoides: indications for participating in ICE-CBF cold stress signaling pathway [J]. Plant Sci, 2017, 259: 62-70
4 Marozsán-Tóth Z, Vashegyi I, Galiba G, Tóth B. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms [J]. J Plant Physiol, 2015, 181: 42-49
5 Medina J, Catalá R, Salinas J. The CBFs: three Arabidopsis transcription factors to cold acclimate [J]. Plant Sci, 2011, 180: 3-11
6 Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis [J]. New Phytol, 2016, 212: 345-353
7 Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev Cell, 2015, 32: 278-289
8 Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis [J]. Mol Plant, 2017, 10: 545-559
9 Zhang Z, Li J, Pan Y, Li J, zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, Yu J, Sun X, Li G, Ding Y, Ma L, Shen S, Dai L, Zhang H, Yang S, Guo Y, Li Z. Natural variation in CTB4a enhances rice adaptation to cold habitats [J]. Nature Commun, 2017, 8: 14788
10 Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53: 247-273
11 Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant [J]. PNAS, 2007, 104: 19631-19636
12 Wang SH, Blumwald E. Salt-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles [J]. Plant Cell, 2014, 26: 4875-4888
13 Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby J-P, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana [J]. Plant J, 2015, 82: 232-244
14 Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis [J]. Plant J, 2015, 84: 56-69
15 Lee HG, Seo PJ. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis [J]. Plant J, 2015, 82: 962-977
16 Lv P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence [J]. Plant J, 2014, 78: 578-590
17 Magnan F, Ranty Bt, Charpenteau M, Sotta B, Galaud J-P, Aldon D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid [J]. Plant J, 2008, 56: 575-589
18 Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels [J]. Plant, 2016, 85: 348-361
19 Fang Q, Jiang,TZ Xub LX, Liu H, Mao H, Wang XQ, Jiao B, Duan Yj, Wang Q, Dong QN, Yang L, Tian GZ, Zhang C, Zhou Y. A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis [J]. Plant Physiol Biochem, 2017, 114: 100-110
20 Barrero-Gil J, Salinas J. CBFs at the crossroads of plant hormone signaling in cold stress response [J]. Mol Plant, 2017, 10: 542-544
21 Choi SW, Lee SB, Na YJ, Jeung SG, Kim SY. Arabidopsis MAP3K16 and other salt-inducible MAP3Ks regulate ABA response redundantly [J]. Mol Cells, 2017, 40 (3): 230-242
22 Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 Kinase modulates freezing tolerance by enhancing ice1 stability in Arabidopsis [J]. Dev Cell, 2015, 32: 278-289
23 He L, Shi X, Wang Y, Guo Y, Yang K, Wang Y. Arabidopsis ANAC069 binds to C[A/G]CG[T/G] sequences to negatively regulate salt and osmotic stress tolerance [J]. Plant Mol Biol, 2017, 93: 369-387
24 Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby J-P, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana [J]. J, 2015, 82: 232-244
25 Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels [J]. Plant J, 2015, 85: 348-361
26 Tang DZ, Ade J, Frye CA, Innes RW. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein [J]. Plant J, 2005, 44 (2): 245–257
27 Satheesh V, Chidambaranathan P, Jagannadham PT, Kumar V, Jain PK, Chinnusamy V, Bhat SR, Srinivasan R. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.) [J]. Plant Signalling Behav, 2016, 11 (2): 1559-2324
28 Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR. Genome-wide insertional mutagenesis of Arabidopsis thaliana [J]. Science, 2003, 301: 653-657
29 Li YX, Deng H, Miao M, Li HR, Huang SX, Wang SH, Liu YS. Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes [J]. New Phytol, 2016, 210: 208-226
30 Xiao J, Li CH, Xu SJ, Xing LJ, Xu YY, Chong K. JACALIN-LECTIN LIKE1 regulates the nuclear accumulation of GLYCINE-RICH RNA-BINDING PROTINE7, influencing the RNA processing of FLOWERING LOCUS C antisense transcripts and flowering time in Arabidopsis [J]. Plant Physiol, 2015, 169: 2102-2117
31 Yoo S-D, Cho Y-H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis [J]. Nature Prot, 2007, 2: 1565-1572
32 Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response [J]. Mol Cell, 2017, 66: 117-128
33 ?rvar BL, Sangwan V, Omann F, Dhindsa RS. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity [J]. Plant J, 2000, 23: 785-794
34 Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species [J]. Plant Physiol, 2008, 149: 1141-1153
35 Zhao F, Song CP, He J, Zhu H. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities [J]. Plant Physiol, 2007, 145: 1061-1072

相似文献/References:

[1]赵昕,盛芬玲,赵敏桂,等.NaCl胁迫下盐芥和拟南芥化合物含量与蛋白质结构变化比较——傅立叶红外光谱法[J].应用与环境生物学报,2008,14(03):371.
 ZHAO Xin,et al..Effects of Salt Stress on Chemical Composition and Protein Conformation Changes in Thellungiella and Arabidopsis Seedlings[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):371.
[2]王爱萍,景蕊莲,杨武德,等.小麦TaMyb2基因转化拟南芥表达载体的构建与遗传转化[J].应用与环境生物学报,2008,14(06):750.[doi:10.3724/SP.J.1145.2008.00750]
 WANG Aiping,JING Ruilian**,et al.Construction and Genetic Transformation of Arabidopsis thaliana Expression Vector of Wheat TaMyb2[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):750.[doi:10.3724/SP.J.1145.2008.00750]
[3]李利红,仪慧兰,武冬梅.二氧化硫胁迫诱发拟南芥植株含硫抗氧化物水平提高[J].应用与环境生物学报,2010,16(05):613.[doi:10.3724/SP.J.1145.2010.00613]
 LI Lihong,YI Huilan,WU Dongmei.Enhancement of Sulfur-containing Antioxidants in Arabidopsis Response to Sulfur Dioxide Fumigation[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):613.[doi:10.3724/SP.J.1145.2010.00613]
[4]程涛,杨建明,刘辉,等.拟南芥硫酯酶基因(atfata)在大肠杆菌中的表达及其对游离脂肪酸合成的影响[J].应用与环境生物学报,2011,17(04):568.[doi:10.3724/SP.J.1145.2011.00568]
 CHENG Tao,YANG Jianming,LIU Hui,et al.Expression of Arabidopsis thaliana Thioesterase Gene (atfata) in Escherichia coli and Its Influence on Biosynthesis of Free Fatty Acid[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):568.[doi:10.3724/SP.J.1145.2011.00568]
[5]马磊,张翔,田永强,等.拟南芥基因组中注释为异胡豆苷合成酶的基因克隆及异源表达[J].应用与环境生物学报,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
 MA Lei,ZHANG Xiang,TIAN Yongqiang,et al.Molecular Cloning and Heterologous Expression of Putative Strictosidine Synthases from Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):224.[doi:10.3724/SP.J.1145.2013.00224]
[6]侯佩,冯媛媛,余桂容,等.拟南芥XERICO基因诱导表达提高转基因植物的耐旱性[J].应用与环境生物学报,2013,19(06):969.[doi:10.3724/SP.J.1145.2013.00969]
 HOU Pei,FENG Yuanyuan,YU Guirong,et al.Improved Drought Tolerance of Transgenic Arabidopsis thaliana by Inducible Expression of XERICO Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):969.[doi:10.3724/SP.J.1145.2013.00969]
[7]陈杰,许长征,曹颖倩,等.不同重金属对拟南芥根系特征的影响比较[J].应用与环境生物学报,2017,23(06):1122.[doi:10.3724/SP.J.1145.2017.03003]
 CHEN Jie,XU Changzheng,CAO Yingqian,et al.Heavy-metal-induced morphological changes of root characteristics in Arabidopsis thaliana[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):1122.[doi:10.3724/SP.J.1145.2017.03003]
[8]常斐斐,曹曦跃,彭婕,等.褪黑素诱导拟南芥抗芸薹根肿菌[J].应用与环境生物学报,2018,24(01):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
 CHANG Feifei,CAO Xiyue,PENG Jie,et al.Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]

更新日期/Last Update: 2018-04-25