|本期目录/Table of Contents|

[1]蒋沁芮,杨暖,吴亭亭,等.生物电化学脱氮技术研究进展[J].应用与环境生物学报,2018,24(02):408-414.[doi: 10.19675/j.cnki.1006-687x.2017.05038]
 JIANG Qinrui,YANG Nuan,WU Tingting,et al.Nitrogen removal from wastewater using the bioelectrochemical technology: a review[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):408-414.[doi: 10.19675/j.cnki.1006-687x.2017.05038]
点击复制

生物电化学脱氮技术研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
408-414
栏目:
综述
出版日期:
2018-04-25

文章信息/Info

Title:
Nitrogen removal from wastewater using the bioelectrochemical technology: a review
作者:
蒋沁芮杨暖吴亭亭李大平
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
JIANG Qinrui YANG Nuan WU Tingting LI Daping
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
生物电化学污水处理阴极反硝化氨氧化反硝化菌硝化菌
Keywords:
bioelectrochemistry wastewater treatment denitrification ammoxidation denitrifying bacteria nitrifying bacteria
分类号:
X703
DOI:
10.19675/j.cnki.1006-687x.2017.05038
摘要:
生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点. 对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH3/NH4+的跨膜转移、氨气逃逸等. 总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象. 最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的. 基于目前BES的优势,认为减少脱氮中间产物(NO2-?-N、N2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向. (图3 表2 参66)
Abstract:
Bioelectrochemical system (BES) has recently received a considerable attention in the field of environmental protection, as it is capable of removing contaminants and recovering energy simultaneously. The principles of nitrogen removal and the transformation pathways, which include cathodic denitrification, anodic ammoxidation, and simultaneous nitrification and denitrification (SND,) involved in the BES are summarized. Furthermore, the removal of abiotic nitrogen, which includes the transmembrane process of NH3/NH4+ and ammonia escape, and the microorganisms involved in nitrogen removal have also been reviewed. Proteobacteria was identified as the dominant phylum in the denitrification biocathode, whereas the majority of nitrifying bacteria were closely related to Nitrosomonas and Nitrobacter. Additionally, a notable stratification was observed between the nitrifying and denitrifying bacteria constituting the biofilm at the bioelectrode during SND. Moreover, an overview of the recent application researches, such as in the treatment of domestic wastewater, leachate, and groundwater, has been provided. The BESs with different reactor configurations or operation modes are established to treat wastewater in order to remove contaminants and recover energy or resources. Furthermore, the prospective and challenges involved in the BES development are briefly discussed. The increase in the use of BESs in the future is expected to decrease the level of intermediates (NO2-?-N, N2O) during nitrogen removal, and the effect on energy generation and removal efficiency.

参考文献/References:

1 Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD. Enzyme catalysed biofuel cells [J]. Energy Environ Sci, 2008, 1 (3): 320-337
2 Arechederra R, Minteer SD. Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes [J]. Electrochim Acta, 2008, 53 (23): 6698-6703
3 Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. ISME J, 2007, 1 (1): 9-18
4 李中坚. 基于微生物电化学系统的废水处理技术研究[D]. 杭州: 浙江大学, 2012 [Li ZJ. Study on bioelectrochemical system based wastewater treatment technology [D]. Hangzhou: Zhejiang Univesity, 2012.]
5 Adeniran JA, Huberts R, De-Koker JJ, Arotiba OA, Olorundare OF, Van-Zyl E, Du-Plessis SC. Energy generation from domestic wastewater using sandwich dual-chamber microbial fuel cell with mesh current collector cathode [J]. Int J Environm Sci Technol, 2016, 13 (9): 2209-2218
6 Logan BE, Murano C, Scott K, Gray ND, Head IM. Electricity generation from cysteine in a microbial fuel cell [J]. Water Res, 2005, 39 (5): 942-952
7 Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly PE. Assessment of microbial fuel cell configurations and power densities [J]. EnvironmSci Technol Lett, 2015, 2 (8): 206-214
8 Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell [J]. Environm Sci Technol, 2004, 38 (21): 5809-5814
9 Dong Y, Liu J, Sui M, Qu Y, Ambuchi JJ, Wang H, Feng YA combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination [J]. J Hazard Mater, 2017, 321: 307-315
10 Rago L, Baeza JA, Guisasola A. Bioelectrochemical hydrogen production with cheese whey as sole substrate [J]. J Chem Technol Biotechnol, 2017, 92 (1): 173-179
11 Chen Z, Niu Y, Zhao S, Khan A, Ling Z, Chen Y, Liu P, Li X. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell [J]. Biosens Bioelectron, 2016, 85: 860-868
12 Chen X, Sun D, Zhang X, Liang P, Huang X. Novel self-driven microbial nutrient recovery cell with simultaneous wastewater purification [J]. Sci Rep, 2015, 5: 15744
13 Maul GA, Kim Y, Amini A, Zhang Q, Boyer TH. Efficiency and life cycle environmental impacts of ion-exchange regeneration using sodium, potassium, chloride, and bicarbonate salts [J]. Chem EngJ, 2014, 254: 198-209
14 Twomey KM, Stillwell AS, Webber ME. The unintended energy impacts of increased nitrate contamination from biofuels production [J]. J Environ Monit, 2010, 12 (1): 218-224
15 Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells [J]. Water Res, 2010, 44 (9): 2970-2980
16 Hussain A, Manuel M, Tartakovsky B. A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells [J]. J Environm Manage, 2016, 173: 23-33
17 Kuntke P, Smiech KM, Bruning H, Zeeman G, Saakes M, Sleutels TH, Hamelers HV, Buisman CJ. Ammonium recovery and energy production from urine by a microbial fuel cell [J]. Water Res, 2012, 46 (8): 2627-2636
18 Liu Y, Qin M, Luo S, He Z, Qiao R. Understanding ammonium transport in bioelectrochemical systems towards its recovery [J]. Sci Rep, 2016, 6: 22547
19 Hayes AM, Flora JRV, Khan J. Electrolytic stimulation of denitrification in sand columns [J]. Water Res, 1998, 32 (9): 2830-2834
20 Sakakibara Y, Kuroda M. Electric prompting and control of denitrification [J]. Biotechnol Bioeng, 1993, 42 (4): 535-537
21 Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration [J]. EnvironMicrobiol, 2004, 6 (6): 596-604
22 Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD, Rabaey K. Bacterial community structure corresponds to performance during cathodic nitrate reduction [J]. ISME J, 2010, 4 (11): 1443-1455
23 Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI, Baggs EM. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway [J]. Environm Microbiol, 2006, 8 (2): 214-222
24 Desloover J, Puig S, Virdis B, Clauwaert P, Boeckx P, Verstraete W, Boon N. Biocathodic nitrous oxide removal in bioelectrochemical systems [J]. Environm Sci Technol, 2011, 45 (24): 10557-10566
25 Virdis B, Read ST, Rabaey K, Rozendal RA, Yuan Z, Keller J. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode [J]. Bioresour Technol, 2011, 102 (1): 334-341
26 Zhu C, Wang H, Yan Q, He R, Zhang G. Enhanced denitrification at biocathode facilitated with biohydrogen production in a three-chambered bioelectrochemical system (BES) reactor [J]. Chem Eng J, 2017, 312: 360-366
27 Park HI, Kim DK, Choi YJ, Pak D. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor [J]. Process Biochem, 2005, 40 (10): 3383-3388
28 Al-Mamun A, Baawain MS. Accumulation of intermediate denitrifying compounds inhibiting biological denitrification on cathode in Microbial Fuel Cell [J]. J Environm Health Sci Eng, 2015, 13: 81
29 Thauer RK, Jungermann K, Decker K. Energy-conservation in chemotropic anaerobic bacteria [J]. Bacteriol Rev, 1977, 41 (1): 100-180
30 Xie Z, Chen H, Zheng P, Zhang J, Cai J, Abbas G. Influence and mechanism of dissolved oxygen on the performance of Ammonia-Oxidation Microbial Fuel Cell [J]. Int J Hydrogen Energy, 2013, 38 (25): 10607-10615
31 Qu B, Fan B, Zhu S, Zheng Y. Anaerobic ammonium oxidation with an anode as the electron acceptor [J]. Environ Microbiol Rep, 2014, 6 (1): 100-105
32 Zhu T, Zhang Y, Bu G, Quan X, Liu Y. Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential [J]. Chem Eng J, 2016, 291: 184-191
33 Zhan G, Zhang L, Tao Y, Wang Y, Zhu X, Li D. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems [J]. Electrochim Acta, 2014, 135: 345-350
34 Desloover J, Woldeyohannis AA, Verstraete W, Boon N, Rabaey K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion [J]. Environ Sci Technol, 2012, 46 (21): 12209-12216
35 Nancharaiah YV, Venkata Mohan S, Lens PN. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems [J]. Bioresour Technol, 2016, 215: 173-185
36 Cheng KY, Kaksonen AH, Cord-Ruwisch R. Ammonia recycling enables sustainable operation of bioelectrochemical systems [J]. Bioresour Technol, 2013, 143: 25-31
37 Zhu G, Chen G, Yu R, Li H, Wang C. Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution [J]. Process Biochem, 2016, 51 (1): 80-88
38 Xiao Y, Zheng Y, Wu S, Yang ZH, Zhao F. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene [J]. Microb Ecol, 2015, 69 (3): 492-499
39 Zhao H, Zhao J, Li F, Li X. Performance of denitrifying microbial fuel cell with biocathode over nitrite [J]. Front Microbiol, 2016, 7: 344
40 Puig S, Serra M, Vilar-Sanz A, Cabré M, Ba?eras L, Colprim J, Balaguer MD. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresour Technol, 2011, 102 (6): 4462-4467
41 He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH. Electricity production coupled to ammonium in a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (9): 3391-3397
42 Vilajeliu-Pons A, Puig S, Pous N, Salcedo-Davila I, Baneras L, Balaguer MD, Colprim J. Microbiome characterization of MFCs used for the treatment of swine manure [J]. J Hazard Mater, 2015, 288: 60-68
43 Jiang HM, Luo SJ, Shi XS, Dai M, Guo RB. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation [J]. J Central S Univ, 2013, 20 (2): 488-494
44 Ge Z, He Z. Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost [J]. Environ Sci: Water Res Technol, 2016, 2 (2): 274-281
45 Doherty L, Zhao Y, Zhao X, Wang W. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology [J]. Chem Eng J, 2015, 266: 74-81
46 Sawasdee V, Pisutpaisal N. Simultaneous pollution treatment and electricity generation of tannery wastewater in air-cathode single chamber MFC [J]. Int JHydrogen Energy, 2016, 41 (35): 15632-15637
47 Zhang G, Jiao Y, Lee DJ. Leachate treatment using anoxic/oxic-bioelectrochemical reactor with intermittent aeration [J]. J Taiwan Ins Chem Eng, 2016, 58: 401-406
48 Qin M, Molitor H, Brazil B, Novak JT, He Z. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system [J]. Bioresour Technol, 2016, 200: 485-492
49 Tong Y, He Z. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system [J]. J Hazard Mater, 2013, 262: 614-619
50 Pous N, Puig S, Coma M, Balaguer MD, Colprim J. Bioremediation of nitrate-polluted groundwater in a microbial fuel cell [J]. J Chem Technol Biotechnol, 2013, 88 (9): 1690-1696
51 Zuo K, Liang S, Liang P, Zhou X, Sun D, Zhang X, Huang X. Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment [J]. Bioresour Technol, 2015, 185: 426-430
52 Villano M, Scardala S, Aulenta F, Majone M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell [J]. Bioresour Technol, 2013, 130: 366-371
53 Lee Y, Martin L, Grasel P, Tawfiq K, Chen G. Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology [J]. Environ Technol, 2013, 34 (17-20): 2727-2736
54 Lefebvre O, Tan Z, Kharkwal S, Ng HY. Effect of increasing anodic NaCl concentration on microbial fuel cell performance [J]. Bioresour Technol, 2012, 112: 336-340
55 Rousseau R, Dominguez-Benetton X, Delia ML, Bergel A. Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells [J]. Electrochem Commun, 2013, 33: 1-4
56 Wang XM, Wang JL. Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition [J]. Int J Environm Sci Technol, 2011, 9 (1): 113-118
57 Zhang B, Liu Y, Tong S, Zheng M, Zhao Y, Tian C, Liu H, Feng C. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells [J]. J Power Sources, 2014, 268: 423-429
58 Yoshida N, Miyata Y, Mugita A, Iida K. Electricity recovery from municipal sewage wastewater using a hydrogel complex composed of microbially reduced graphene oxide and sludge [J]. Materials, 2016, 9 (9): 742
59 Liu Q, Ren ZJ, Huang C, Liu B, Ren N, Xing D. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells [J]. Biotechnol Biofuels, 2016, 9: 162
60 Yu N, Xing D, Li W, Yang Y, Li Z, Li Y, Ren N. Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems [J]. Int J Hydrogen Energy, 2016, 42 (1): 96-102
61 Almatouq A, Babatunde AO. Concurrent phosphorus recovery and energy generation in mediator-less dual chamber microbial fuel cells: mechanisms and influencing factors [J]. Int J Environm Res Publ Health, 2016, 13 (4): 375
62 Monzon O, Yang Y, Li Q, Alvarez PJJ. Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell [J]. Biochem Eng J, 2016, 109: 222-227
63 Yong YC, Yu YY, Li CM, Zhong JJ, Song H. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells [J]. Biosens Bioelectron, 2011, 30 (1): 87-92
64 Nguyen VK, Park Y, Yang H, Yu J, Lee T. Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system [J]. J Ind Microbiol Biotechnol, 2016, 43 (6): 783-793
65 Puig S, Coma M, Desloover J, Boon N, Colprim J, Balaguer MD. Autotrophic denitrification in microbial fuel cells treating low ionic strength waters [J]. Environm Sci Technol, 2012, 46 (4): 2309-2315
66 An J, Kim B, Jang JK, Lee HS, Chang IS. New architecture for modulization of membraneless and single-chambered microbial fuel cell using a bipolar plate-electrode assembly (BEA) [J]. Biosens Bioelectron, 2014, 59: 28-34

相似文献/References:

[1]王振宇,余韬,张昱,等.采油废水缺氧处理体系细菌和古细菌丰度对比[J].应用与环境生物学报,2009,15(04):519.[doi:10.3724/SP.J.1145.2009.00519]
 WANG Zhenyu,YU Tao,ZHANG Yu,et al.Comparison of Eubacteria and Archaea Richness in Anoxic Treatment System for Oilfield-produced Wastewater[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):519.[doi:10.3724/SP.J.1145.2009.00519]
[2]王萌,王玉彬,陈章和.芦苇的种质资源及在人工湿地中的应用[J].应用与环境生物学报,2010,16(04):590.[doi:10.3724/SP.J.1145.2010.00590]
 WANG Meng,WANG Yubin,CHEN Zhanghe.Germplasm Resource of Phragmites adans and Its Application in Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):590.[doi:10.3724/SP.J.1145.2010.00590]
[3]诸葛斌,徐巧,堵国成,等.一株耐冷菌所产降解酶的特性及应用[J].应用与环境生物学报,2010,16(06):870.[doi:10.3724/SP.J.1145.2010.00870]
 ZHUGE Bin,XU Qiao,DU Guocheng,et al.Properties and Application of Cold-adapted Enzymes Produced by a Psychrotrophic Bacterium[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):870.[doi:10.3724/SP.J.1145.2010.00870]
[4]张培玉,曲洋,杨瑞霞,等.耐盐异养硝化菌驯化方法及分离菌株鉴定[J].应用与环境生物学报,2011,17(01):121.[doi:10.3724/SP.J.1145.2011.00121]
 ZHANG Peiyu,QU Yang,YANG Ruixia,et al.Domestication of Halotolerant Heterotrophic Nitrifying Bacteria and Identification of Two Isolated Strains[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):121.[doi:10.3724/SP.J.1145.2011.00121]
[5]卢文翔,闫新,张迹,等.硝基苯降解菌的分离鉴定及降解特性[J].应用与环境生物学报,2011,17(02):243.[doi:10.3724/SP.J.1145.2011.00243]
 LU Wenxiang,YAN Xin,ZHANG Ji,et al.Isolation, Identification and Characteristics of Nitrobenzene-degrading Bacterium XY-1[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):243.[doi:10.3724/SP.J.1145.2011.00243]
[6]王钦琪,李环,王翠,等.沼液培养的普通小球藻对CO2的去除[J].应用与环境生物学报,2011,17(05):700.[doi:10.3724/SP.J.1145.2011.00700]
 WANG Qinqi,LI Huan,WANG Cui,et al.Reduction of CO2 by Chlorella vulgaris Cultured in Biogas Slurry[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):700.[doi:10.3724/SP.J.1145.2011.00700]
[7]胡芳,赵学敏,蔡信德,等.不同生态工程组合系统对南方水源地污水的净化效果[J].应用与环境生物学报,2012,18(04):635.[doi:10.3724/SP.J.1145.2012.00635]
 HU Fang,ZHAO Xuemin,CAI Xinde,et al.Purification Effects of Different Ecological Treatment Systems and Their Combination on Source Water in Southern China[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):635.[doi:10.3724/SP.J.1145.2012.00635]
[8]邱晓帆,堵国成,陈坚.一株假单胞菌WSH 1001的脱氮特性[J].应用与环境生物学报,2012,18(05):768.[doi:10.3724/SP.J.1145.2012.00768]
 QIU Xiaofan,DU Guocheng,CHEN Jian.Performance of Nitrogen Removal by Pseudomonas sp. WSH 1001[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):768.[doi:10.3724/SP.J.1145.2012.00768]
[9]韦菊阳,陈章和.梭鱼草和芦苇人工湿地对重金属和营养的去除率比较[J].应用与环境生物学报,2013,19(01):179.[doi:10.3724/SP.J.1145.2013.00179]
 WEI Juyang,CHEN Zhanghe.Removal of Heavy Metal Elements and Nutrients by Pontederia cordata and Phragmites australis Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):179.[doi:10.3724/SP.J.1145.2013.00179]
[10]鲍姝,方扬,靳艳玲,等.污水氮磷浓度对云南本地浮萍生长及氮磷去除的影响[J].应用与环境生物学报,2014,20(01):56.[doi:10.3724/SP.J.1145.2014.00056]
 BAO Shu,FANG Yang,JIN Yanling,et al.Influence of ammonium and phosphate concentration of sewage on the growth, nitrogen and phosphorus removal of duckweed in Yunan[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):56.[doi:10.3724/SP.J.1145.2014.00056]

更新日期/Last Update: 2018-04-25