|本期目录/Table of Contents|

[1]胡云龙,白银萍,董发勤,等.泥炭地亚表层含碳温室气体排放及其影响因素[J].应用与环境生物学报,2018,24(02):395-400.[doi: 10.19675/j.cnki.1006-687x.2017.05017]
 HU Yunlong,BAI Yinping,DONG Faqin,et al.Carbon dioxide and methane emission from subsurface peatlands and its controlling factors[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):395-400.[doi: 10.19675/j.cnki.1006-687x.2017.05017]
点击复制

泥炭地亚表层含碳温室气体排放及其影响因素()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
395-400
栏目:
综述
出版日期:
2018-04-25

文章信息/Info

Title:
Carbon dioxide and methane emission from subsurface peatlands and its controlling factors
作者:
胡云龙白银萍董发勤陈槐黄晶刘明学杨刚
1西南科技大学生命科学与工程学院 绵阳 621010 2中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 610041 3西南科技大学固体废物处理与资源化教育部重点实验室 绵阳 621010
Author(s):
HU Yunlong BAI Yinping DONG Faqin CHEN Huai HUANG Jing LIU Mingxue YANG Gang
1 School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China 2 Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu 610041, China 3 Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
关键词:
亚表层泥炭碳循环土壤酶退化气候变化人类活动
Keywords:
subsurface peatlands carbon cycle soil enzyme degradation climate change human activity
分类号:
X171
DOI:
10.19675/j.cnki.1006-687x.2017.05017
摘要:
泥炭地是陆地生态系统的重要碳库,其碳动态对全球碳循环起着重要影响. 近年来,在人类活动和气候变化的影响下,泥炭地急剧退化. 表层泥炭在有氧环境下快速分解,亚表层也可能加速代谢过程. 结合国内外有关亚表层泥炭的研究进展,综述和阐释自然环境下和退化后亚表层泥炭地二氧化碳和甲烷两种含碳温室气体及其主要影响因子(自然因子和人为因子). 结果表明,泥炭地退化后,亚表层会迅速参与到泥炭地生态系统碳循环;水位、植被、温度是影响泥炭地碳循环的主要自然因子,排水、耕作、放牧是主要人为因子. 目前对泥炭地亚表层含碳温室气体排放及其影响因素的研究还不够深入,主要侧重于温室气体通量对不同影响因子的短期响应,在后续研究中应结合新的研究技术与方法,加强泥炭地亚表层碳排放机理的研究. (图1 参57)
Abstract:
Peatland is an efficient carbon dioxide (CO2) sink on the continent and plays an important role in global carbon cycle. Climate change and human activities, two of the notable global environmental issues, have accelerated the degradation of peatlands during recent years. Global warming will increase the rate of aerobic decomposition in the surface of peatlands. Carbon stored in the subsurface of peatlands will be metabolized if the climatic conditions become favorable for decomposition. This study reviewed the carbon circle of subsurface peatland in natural environment and in environments disturbed by human activity or climate change. Furthermore, the major factors (environmental and human factors) that affect the carbon cycle were also discussed. According to a previous study, subsurface peatland will rapidly participate in the carbon cycle when the peatland is degraded. Water level, vegetation, and temperature were the main natural factors affecting the carbon cycle, whereas drainage, farming, and grazing were the main anthropogenic factors. Further studies should focus on different soil layer carbon dynamics, inorganic carbon content, and conservation and restoration of peatlands. The study methods should be a combination of macro with micro scale and focus on developing deep peat research techniques. Most of the previous studies focused on greenhouse gas emission and their response factors in short-term experiments. Thus, the mechanism and process of subsurface carbon are not clear and needs further study.

参考文献/References:

1 刘子刚, 王铭, 马学慧. 世界泥炭地有机碳储量和有机碳密度[J]. 湿地科学, 2014, 12(3): 279-85 [Liu ZG, Wang M, Ma XH. Estimation of organic carbon storage of peatlands in the world [J]. Wetland Sci, 2014, 12 (3): 279-285]
2 Bispo DFA, Silva AC, Christofaro C, Silva MLN, Barbosa MS, Silva BPC, Barral UM, Fabris JD. Hydrology and carbon dynamics of tropical peatlands from Southeast Brazil [J]. Catena, 2016, 143: 18-25
3 Rudiyanto, Minasny B, Setiawan BI, Arif C, Saptomo SK, Chadirin Y. Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands [J]. Geoderma, 2016, 272: 20-31
4 Wang M, Chen H, Wu N, Peng C, Zhu Q, Zhu D, Yang G, Wu J, He Y, Gao Y, Tian J, Zhao X. Carbon dynamics of peatlands in China during the Holocene [J]. Quat Sci Rev, 2014, 99: 34-41
5 Iriana W, Tonokura K, Kawasaki M, Inoue G, Kusin K, Limin SH. Measurement of carbon dioxide flux from tropical peatland in Indonesia using the nocturnal temperature-inversion trap method [J]. Environ Res Lett, 2016, 11 (9): 8
6 Page SE, Rieley JO, Banks CJ. Global and regional importance of the tropical peatland carbon pool [J]. Glob Change Biol, 2011, 17 (2): 798-818
7 Lai DYF. Methane dynamics in northern Peatlands: a review [J]. Pedosphere, 2009, 19 (4): 409-421
8 Yu ZC. Northern peatland carbon stocks and dynamics: a review [J]. Biogeosciences, 2012, 9 (10): 4071-4085
9 Yu ZC, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum [J]. Geophys Res Lett, 2010, 37: 5
10 Dieleman CM, Lindo Z, McLaughlin JW, Craig AE, Branfireun BA. Climate change effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry [J]. Biogeochemistry, 2016, 128 (3): 385-396
11 Abdalla M, Hastings A, Truu J, Espenberg M, Mander U, Smith P. Emissions of methane from northern peatlands: a review of management impacts and implications for future management options [J]. Ecol Evol, 2016, 6 (19): 7080-7102
12 Koarashi J, Hockaday WC, Masiello CA, Trumbore SE. Dynamics of decadally cycling carbon in subsurface soils [J]. J Geophys Res-Biogeosci, 2012, 117: 13
13 Ota M, Nagai H, Koarashi J. Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach [J]. J Geophys Res-Biogeosci, 2013, 118 (4): 1646-1659
14 Wang M, Yang G, Gao Y, Chen H, Wu N, Peng C, Zhu Q, Zhu D, Wu J, He Y, Tian J, Zhao X, Zhang Y. Higher recent peat C accumulation than that during the Holocene on the Zoige Plateau [J]. Quat Sci Rev, 2015, 114: 116-125
15 Levy PE, Gray A. Greenhouse gas balance of a semi-natural peatbog in northern Scotland [J]. Environ Res Lett, 2015, 10 (9): 11
16 Deng J, Li CS, Frolking S. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland [J]. J Geophys Res-Biogeosci, 2015, 120 (7): 1279-1295
17 Fleischer E, Khashimov I, Holzel N, Klemm O. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change [J]. Sci Total Environ, 2016, 545: 424-433
18 Zhao JB, Peichl M, Nilsson MB. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland [J]. Glob Change Biol, 2016, 22 (2): 750-762
19 Itoh M, Shimamura T, Ohte N, Takemon Y. Differences in hydrophyte life forms induce spatial heterogeneity of CH4 production and its carbon isotopic signature in a temperate bog peatland [J]. J Geophys Res-Biogeosci, 2015, 120 (7): 1177-1195
20 Hoyos-Santillan J, Lomax B H, Large D, Turner BL, Boom A, Lopez OR, Sjoegersten S. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles [J]. Soil Biol Biochem, 2016, 103: 86-96
21 Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales [J]. Glob Change Biol, 2013, 19 (5): 1325-1346
22 Throckmorton HM, Heikoop JM, Newman BD, Altmann GL, Conrad MS, Muss JD, Perkins GB, Smith LJ, Torn MS, Wullschleger SD, Wilson CJ. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: evidence from analysis of stable isotopes [J]. Glob Biogeochem Cycle, 2015, 29 (11): 1893-1910
23 Liebner S, Ganzert L, Kiss A, Yang SZ, Wagner D, Svenning MM. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost [J]. Front Microbiol, 2015, 6: 10
24 Ye RZ, Keller JK, Jin QS, Bohannan BJM, Bridgham SD. Peatland types influence the inhibitory effects of a humic substance analog on methane production [J]. Geoderma, 2016, 265: 131-140
25 Jammet M, Crill P, Dengel S, Friborg T. Large methane emissions from a subarctic lake during spring thaw: mechanisms and landscape significance [J]. J Geophys Res-Biogeosci, 2015, 120 (11): 2289-2305
26 Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook E RC, Minkkinen K, Moore TR, Myers-Smith IH, Nykanen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands [J]. Glob Change Biol, 2014, 20 (7): 2183-2197
27 Jones MC, Harden J, O’Donnell J, Manies K, Jorgenson T, Treat C, Ewing S. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands [J]. Global Change Biol, 2017, 23 (3): 1109-1127
28 Garnett MH, Gulliver P, Billett MF. A rapid method to collect methane from peatland streams for radiocarbon analysis [J]. Ecohydrology, 2016, 9 (1): 113-121
29 Ramirez JA, Baird AJ, Coulthard TJ, Waddington JM. Ebullition of methane from peatlands: does peat act as a signal shredder [J]? Geophys Res Lett, 2015, 42 (9): 3371-3379
30 Zhu D, Wu Y, Chen H, He YX, Wu N. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau [J]. Sci Total Environ, 2016, 542: 57-64
31 Worrall F, Clay GD, Moody CS, Burt TP, Rose R. The effective oxidation state of a peatland [J]. J Geophys Res-Biogeosci, 2016, 121 (1): 145-158
32 Peacock M, Ridley LM, Evans CD, Gauci V. Management effects on greenhouse gas dynamics in fen ditches [J]. Sci Total Environ, 2017, 578: 601-612
33 Liu X, Guo YD, Hu HQ, Sun CK, Zhao XK, Wei CL. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China [J]. Atmos Environ, 2015, 122: 454-462
34 Zeng XY, Gao YH. Short-term effects of drying and rewetting on CO2 and CH4 emissions from high-altitude Peatlands on the Tibetan Plateau [J]. Atmosphere, 2016, 7 (11): 7
35 Wilson D, Blain D, Couwenberg J, Evans CD, Murdiyarso D, Page SE, Renou-Wilson F, Rieley JO, Sirin A, Strack M, Tuittila ES. Greenhouse gas emission factors associated with rewetting of organic soils [J]. Mires Peat, 2016, 17: 28
36 Koskinen M, Maanavilja L, Nieminen M, Minkkinen K, Tuittila ES. High methane emissions from restored Norway spruce swamps in southern Finland over one growing season [J]. Mires Peat, 2016, 17: 13
37 Iwata H, Harazono Y, Ueyama M, Sakabe A, Nagano H, Kosugi Y, Takahashi K, Kim Y. Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique [J]. Agric For Meteorol, 2015, 214: 157-168
38 Evans CD, Thomas DN. Controls on the processing and fate of terrestrially-derived organic carbon in aquatic ecosystems: synthesis of special issue introduction [J]. Aquat Sci, 2016, 78 (3): 415-418
39 Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff C, McFarlane KJ, Kostka JE, Kolton M, Kolka RK, Kluber LA, Keller JK, Guilderson TP, Griffiths NA, Chanton JP, Bridgham SD, Hanson PJ. Stability of peatland carbon to rising temperatures [J]. Nat Commun, 2016, 7: 10
40 Gao YH, Zeng XY, Xie QY, Ma XX. Release of carbon and nitrogen from alpine soils during thawing periods in the eastern Qinghai-Tibet Plateau [J]. Water Air Soil Pollut, 2015, 226 (7): 9
41 Yang G, Wang M, Chen H, Liu L, Wu N, Zhu D, Tian J, Peng C, Zhu Q, He Y. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands [J]. Atmos Environ, 2017, 152: 323-329
42 Liu L, Chen H, Zhu Q, Yang G, Zhu E, Hu J, Peng C, Jiang L, Zhan W, Ma T, He Y, Zhu D. Responses of peat carbon at different depths to simulated warming and oxidizing [J]. Sci Total Environ, 2016, 548: 429-440.
43 Peng H, Hong B, Hong Y, Zhu Y, Cai C, Yuan L, Wang Y. Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai-Tibet Plateau and its controlling factors [J]. Environ Monit Assess, 2015, 187 (9): 9
44 Kritzler UH, Artz RRE, Johnson D. Soil CO2 efflux in a degraded raised bog is regulated by water table depth rather than recent plant assimilate [J]. Mires Peat, 2016, 17: 14
45 Armstrong A, Waldron S, Ostle NJ, Richardson H, Whitaker J. Biotic and abiotic factors interact to regulate northern Peatland carbon cycling [J]. Ecosystems, 2015, 18 (8): 1395-1409
46 Robroek BJM, Jassey VEJ, Kox MAR, Berendsen RL, Mills RTE, Cecillon L, Puissant J, Meima-Franke M, Bakker PAHM, Bodelier PLE. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure [J]. J Ecol, 2015, 103 (4): 925-934
47 Krimly T, Angenendt E, Bahrs E, Dabbert S. Global warming potential and abatement costs of different peatland management options: a case study for the Pre-alpine Hill and Moorland in Germany [J]. Agric Syst, 2016, 145: 1-12
48 Campbell DI, Wall AM, Nieveen JP, Schipper LA. Variations in CO2 exchange for dairy farms with year-round rotational grazing on drained peatlands [J]. Agric Ecosyst Environ, 2015, 202: 68-78
49 Nurulita Y, Adetutu EM, Gunawan H, Zul D, Ball AS. Restoration of tropical peat soils: the application of soil microbiology for monitoring the success of the restoration process [J]. Agric Ecosyst Environ, 2016, 216: 293-303
50 Susilawati HL, Setyanto P, Ariani M, Hervani A, Inubushi K. Influence of water depth and soil amelioration on greenhouse gas emissions from peat soil columns [J]. Soil Sci Plant Nutr, 2016, 62 (1): 57-68
51 Strack M, Cagampan J, Fard GH, Keith AM, Nugent K, Rankin T, Robinson C, Strachan IB, Waddington JM, Xu B. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites [J]? Mires Peat, 2016, 17: 18
52 Muller R, Heinicke T, Juschus O, Zeitz J. Genesis and abiotic characteristics of three high-altitude peatlands in the Tien Shan Mountains (Kyrgyzstan), with focus on silty peatland substrates [J]. Mires Peat, 2016, 18: 19
53 Worrall F, Clay GD. The impact of sheep grazing on the carbon balance of a peatland [J]. Sci Total Environ, 2012, 438: 426-434
54 Stark S, Ylanne H. Grazing in Arctic peatlands-an unknown agent in the global carbon budget [J]. Environ Res Lett, 2015, 10 (5): 3
55 Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ. Long-term consequences of grazing and burning on northern peatland carbon dynamics [J]. Ecosystems, 2007, 10 (7): 1069-1083
56 Ma K, Liu JG, Zhang Y, Parry LE, Holden J, Ciais P. Refining soil organic carbon stock estimates for China’s palustrine wetlands [J]. Environ Res Lett, 2015, 10 (12): 10
57 Ma K, Zhang Y, Tang SX, Liu JG. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau [J]. Catena, 2016, 144: 102-108

相似文献/References:

[1]李以康,张法伟,林丽,等.青海湖区紫花针茅草原封育导致的土壤养分时空变化特征[J].应用与环境生物学报,2012,18(01):23.[doi:DOI: 10.3724/SP.J.1145.2012.00023]
 LI Yikang,ZHANG Fawei,LIN Li,et al.Spatiotemporal Variation in Soil Nutrient of Stipa purpurea Steppe Fenced in the Qinghai Lake Region[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):23.[doi:DOI: 10.3724/SP.J.1145.2012.00023]
[2]陈颖,邱凯瑞,吴麒,等.桂林会仙岩溶湿地产甲烷菌的数量、群落组成和活性[J].应用与环境生物学报,2017,23(06):959.[doi:10.3724/SP.J.1145.2016.11043]
 CHEN Ying,**,QIU Kairui,et al.Methanogenic community structure, abundance, and activity in Huixian karst wetland, Guilin, China[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):959.[doi:10.3724/SP.J.1145.2016.11043]
[3]范周周 卢舒瑜 李志茹 庞丹波 周金星 肖桂英 彭霞薇**.岩溶与非岩溶地区不同林分根际土壤微生物对碳酸盐岩的溶蚀作用*[J].应用与环境生物学报,2018,24(04):1.[doi:10.3724/SP.J.1145.2017.09031]
 FAN Zhouzhou,LU Shuyu,LI Zhiru,et al.Study on roles of soil microbes from different forest stands rhizosphere in karst and non karst areas in dissolution of calcium carbonate *[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):1.[doi:10.3724/SP.J.1145.2017.09031]

更新日期/Last Update: 2018-04-25