1 刘子刚, 王铭, 马学慧. 世界泥炭地有机碳储量和有机碳密度[J]. 湿地科学, 2014, 12(3): 279-85 [Liu ZG, Wang M, Ma XH. Estimation of organic carbon storage of peatlands in the world [J]. Wetland Sci, 2014, 12 (3): 279-285] 2 Bispo DFA, Silva AC, Christofaro C, Silva MLN, Barbosa MS, Silva BPC, Barral UM, Fabris JD. Hydrology and carbon dynamics of tropical peatlands from Southeast Brazil [J]. Catena, 2016, 143: 18-25 3 Rudiyanto, Minasny B, Setiawan BI, Arif C, Saptomo SK, Chadirin Y. Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands [J]. Geoderma, 2016, 272: 20-31 4 Wang M, Chen H, Wu N, Peng C, Zhu Q, Zhu D, Yang G, Wu J, He Y, Gao Y, Tian J, Zhao X. Carbon dynamics of peatlands in China during the Holocene [J]. Quat Sci Rev, 2014, 99: 34-41 5 Iriana W, Tonokura K, Kawasaki M, Inoue G, Kusin K, Limin SH. Measurement of carbon dioxide flux from tropical peatland in Indonesia using the nocturnal temperature-inversion trap method [J]. Environ Res Lett, 2016, 11 (9): 8 6 Page SE, Rieley JO, Banks CJ. Global and regional importance of the tropical peatland carbon pool [J]. Glob Change Biol, 2011, 17 (2): 798-818 7 Lai DYF. Methane dynamics in northern Peatlands: a review [J]. Pedosphere, 2009, 19 (4): 409-421 8 Yu ZC. Northern peatland carbon stocks and dynamics: a review [J]. Biogeosciences, 2012, 9 (10): 4071-4085 9 Yu ZC, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum [J]. Geophys Res Lett, 2010, 37: 5 10 Dieleman CM, Lindo Z, McLaughlin JW, Craig AE, Branfireun BA. Climate change effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry [J]. Biogeochemistry, 2016, 128 (3): 385-396 11 Abdalla M, Hastings A, Truu J, Espenberg M, Mander U, Smith P. Emissions of methane from northern peatlands: a review of management impacts and implications for future management options [J]. Ecol Evol, 2016, 6 (19): 7080-7102 12 Koarashi J, Hockaday WC, Masiello CA, Trumbore SE. Dynamics of decadally cycling carbon in subsurface soils [J]. J Geophys Res-Biogeosci, 2012, 117: 13 13 Ota M, Nagai H, Koarashi J. Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach [J]. J Geophys Res-Biogeosci, 2013, 118 (4): 1646-1659 14 Wang M, Yang G, Gao Y, Chen H, Wu N, Peng C, Zhu Q, Zhu D, Wu J, He Y, Tian J, Zhao X, Zhang Y. Higher recent peat C accumulation than that during the Holocene on the Zoige Plateau [J]. Quat Sci Rev, 2015, 114: 116-125 15 Levy PE, Gray A. Greenhouse gas balance of a semi-natural peatbog in northern Scotland [J]. Environ Res Lett, 2015, 10 (9): 11 16 Deng J, Li CS, Frolking S. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland [J]. J Geophys Res-Biogeosci, 2015, 120 (7): 1279-1295 17 Fleischer E, Khashimov I, Holzel N, Klemm O. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change [J]. Sci Total Environ, 2016, 545: 424-433 18 Zhao JB, Peichl M, Nilsson MB. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland [J]. Glob Change Biol, 2016, 22 (2): 750-762 19 Itoh M, Shimamura T, Ohte N, Takemon Y. Differences in hydrophyte life forms induce spatial heterogeneity of CH4 production and its carbon isotopic signature in a temperate bog peatland [J]. J Geophys Res-Biogeosci, 2015, 120 (7): 1177-1195 20 Hoyos-Santillan J, Lomax B H, Large D, Turner BL, Boom A, Lopez OR, Sjoegersten S. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles [J]. Soil Biol Biochem, 2016, 103: 86-96 21 Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales [J]. Glob Change Biol, 2013, 19 (5): 1325-1346 22 Throckmorton HM, Heikoop JM, Newman BD, Altmann GL, Conrad MS, Muss JD, Perkins GB, Smith LJ, Torn MS, Wullschleger SD, Wilson CJ. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: evidence from analysis of stable isotopes [J]. Glob Biogeochem Cycle, 2015, 29 (11): 1893-1910 23 Liebner S, Ganzert L, Kiss A, Yang SZ, Wagner D, Svenning MM. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost [J]. Front Microbiol, 2015, 6: 10 24 Ye RZ, Keller JK, Jin QS, Bohannan BJM, Bridgham SD. Peatland types influence the inhibitory effects of a humic substance analog on methane production [J]. Geoderma, 2016, 265: 131-140 25 Jammet M, Crill P, Dengel S, Friborg T. Large methane emissions from a subarctic lake during spring thaw: mechanisms and landscape significance [J]. J Geophys Res-Biogeosci, 2015, 120 (11): 2289-2305 26 Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook E RC, Minkkinen K, Moore TR, Myers-Smith IH, Nykanen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands [J]. Glob Change Biol, 2014, 20 (7): 2183-2197 27 Jones MC, Harden J, O’Donnell J, Manies K, Jorgenson T, Treat C, Ewing S. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands [J]. Global Change Biol, 2017, 23 (3): 1109-1127 28 Garnett MH, Gulliver P, Billett MF. A rapid method to collect methane from peatland streams for radiocarbon analysis [J]. Ecohydrology, 2016, 9 (1): 113-121 29 Ramirez JA, Baird AJ, Coulthard TJ, Waddington JM. Ebullition of methane from peatlands: does peat act as a signal shredder [J]? Geophys Res Lett, 2015, 42 (9): 3371-3379 30 Zhu D, Wu Y, Chen H, He YX, Wu N. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau [J]. Sci Total Environ, 2016, 542: 57-64 31 Worrall F, Clay GD, Moody CS, Burt TP, Rose R. The effective oxidation state of a peatland [J]. J Geophys Res-Biogeosci, 2016, 121 (1): 145-158 32 Peacock M, Ridley LM, Evans CD, Gauci V. Management effects on greenhouse gas dynamics in fen ditches [J]. Sci Total Environ, 2017, 578: 601-612 33 Liu X, Guo YD, Hu HQ, Sun CK, Zhao XK, Wei CL. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China [J]. Atmos Environ, 2015, 122: 454-462 34 Zeng XY, Gao YH. Short-term effects of drying and rewetting on CO2 and CH4 emissions from high-altitude Peatlands on the Tibetan Plateau [J]. Atmosphere, 2016, 7 (11): 7 35 Wilson D, Blain D, Couwenberg J, Evans CD, Murdiyarso D, Page SE, Renou-Wilson F, Rieley JO, Sirin A, Strack M, Tuittila ES. Greenhouse gas emission factors associated with rewetting of organic soils [J]. Mires Peat, 2016, 17: 28 36 Koskinen M, Maanavilja L, Nieminen M, Minkkinen K, Tuittila ES. High methane emissions from restored Norway spruce swamps in southern Finland over one growing season [J]. Mires Peat, 2016, 17: 13 37 Iwata H, Harazono Y, Ueyama M, Sakabe A, Nagano H, Kosugi Y, Takahashi K, Kim Y. Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique [J]. Agric For Meteorol, 2015, 214: 157-168 38 Evans CD, Thomas DN. Controls on the processing and fate of terrestrially-derived organic carbon in aquatic ecosystems: synthesis of special issue introduction [J]. Aquat Sci, 2016, 78 (3): 415-418 39 Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff C, McFarlane KJ, Kostka JE, Kolton M, Kolka RK, Kluber LA, Keller JK, Guilderson TP, Griffiths NA, Chanton JP, Bridgham SD, Hanson PJ. Stability of peatland carbon to rising temperatures [J]. Nat Commun, 2016, 7: 10 40 Gao YH, Zeng XY, Xie QY, Ma XX. Release of carbon and nitrogen from alpine soils during thawing periods in the eastern Qinghai-Tibet Plateau [J]. Water Air Soil Pollut, 2015, 226 (7): 9 41 Yang G, Wang M, Chen H, Liu L, Wu N, Zhu D, Tian J, Peng C, Zhu Q, He Y. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands [J]. Atmos Environ, 2017, 152: 323-329 42 Liu L, Chen H, Zhu Q, Yang G, Zhu E, Hu J, Peng C, Jiang L, Zhan W, Ma T, He Y, Zhu D. Responses of peat carbon at different depths to simulated warming and oxidizing [J]. Sci Total Environ, 2016, 548: 429-440. 43 Peng H, Hong B, Hong Y, Zhu Y, Cai C, Yuan L, Wang Y. Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai-Tibet Plateau and its controlling factors [J]. Environ Monit Assess, 2015, 187 (9): 9 44 Kritzler UH, Artz RRE, Johnson D. Soil CO2 efflux in a degraded raised bog is regulated by water table depth rather than recent plant assimilate [J]. Mires Peat, 2016, 17: 14 45 Armstrong A, Waldron S, Ostle NJ, Richardson H, Whitaker J. Biotic and abiotic factors interact to regulate northern Peatland carbon cycling [J]. Ecosystems, 2015, 18 (8): 1395-1409 46 Robroek BJM, Jassey VEJ, Kox MAR, Berendsen RL, Mills RTE, Cecillon L, Puissant J, Meima-Franke M, Bakker PAHM, Bodelier PLE. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure [J]. J Ecol, 2015, 103 (4): 925-934 47 Krimly T, Angenendt E, Bahrs E, Dabbert S. Global warming potential and abatement costs of different peatland management options: a case study for the Pre-alpine Hill and Moorland in Germany [J]. Agric Syst, 2016, 145: 1-12 48 Campbell DI, Wall AM, Nieveen JP, Schipper LA. Variations in CO2 exchange for dairy farms with year-round rotational grazing on drained peatlands [J]. Agric Ecosyst Environ, 2015, 202: 68-78 49 Nurulita Y, Adetutu EM, Gunawan H, Zul D, Ball AS. Restoration of tropical peat soils: the application of soil microbiology for monitoring the success of the restoration process [J]. Agric Ecosyst Environ, 2016, 216: 293-303 50 Susilawati HL, Setyanto P, Ariani M, Hervani A, Inubushi K. Influence of water depth and soil amelioration on greenhouse gas emissions from peat soil columns [J]. Soil Sci Plant Nutr, 2016, 62 (1): 57-68 51 Strack M, Cagampan J, Fard GH, Keith AM, Nugent K, Rankin T, Robinson C, Strachan IB, Waddington JM, Xu B. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites [J]? Mires Peat, 2016, 17: 18 52 Muller R, Heinicke T, Juschus O, Zeitz J. Genesis and abiotic characteristics of three high-altitude peatlands in the Tien Shan Mountains (Kyrgyzstan), with focus on silty peatland substrates [J]. Mires Peat, 2016, 18: 19 53 Worrall F, Clay GD. The impact of sheep grazing on the carbon balance of a peatland [J]. Sci Total Environ, 2012, 438: 426-434 54 Stark S, Ylanne H. Grazing in Arctic peatlands-an unknown agent in the global carbon budget [J]. Environ Res Lett, 2015, 10 (5): 3 55 Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ. Long-term consequences of grazing and burning on northern peatland carbon dynamics [J]. Ecosystems, 2007, 10 (7): 1069-1083 56 Ma K, Liu JG, Zhang Y, Parry LE, Holden J, Ciais P. Refining soil organic carbon stock estimates for China’s palustrine wetlands [J]. Environ Res Lett, 2015, 10 (12): 10 57 Ma K, Zhang Y, Tang SX, Liu JG. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau [J]. Catena, 2016, 144: 102-108
[1]李以康,张法伟,林丽,等.青海湖区紫花针茅草原封育导致的土壤养分时空变化特征[J].应用与环境生物学报,2012,18(01):23.[doi:DOI: 10.3724/SP.J.1145.2012.00023]
LI Yikang,ZHANG Fawei,LIN Li,et al.Spatiotemporal Variation in Soil Nutrient of Stipa purpurea Steppe Fenced in the Qinghai Lake Region[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):23.[doi:DOI: 10.3724/SP.J.1145.2012.00023]
[2]陈颖,邱凯瑞,吴麒,等.桂林会仙岩溶湿地产甲烷菌的数量、群落组成和活性[J].应用与环境生物学报,2017,23(06):959.[doi:10.3724/SP.J.1145.2016.11043]
CHEN Ying,**,QIU Kairui,et al.Methanogenic community structure, abundance, and activity in Huixian karst wetland, Guilin, China[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):959.[doi:10.3724/SP.J.1145.2016.11043]
[3]范周周,卢舒瑜,李志茹,等.岩溶与非岩溶地区不同林分根际土壤微生物对碳酸盐岩的溶蚀作用[J].应用与环境生物学报,2018,24(04):751.[doi: 10.19675/j.cnki.1006-687x.2017.09031]
FAN Zhouzhou,LU Shuyu,LI Zhiru,et al.Roles of rhizospheric soil microbes of different forest stands in karst and non-karst areas in the dissolution of calcium carbonate[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):751.[doi: 10.19675/j.cnki.1006-687x.2017.09031]