|本期目录/Table of Contents|

[1]游洋,吴波,胡国全,等.牛粪生物质资源综合利用研究进展[J].应用与环境生物学报,2018,24(02):401-407.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
 YOU Yang,WU Bo,HU Guoquan,et al.Research progress of the comprehensive utilization of cow dung biomass resources[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):401-407.[doi: 10.19675/j.cnki.1006-687x.2017.05007]
点击复制

牛粪生物质资源综合利用研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
401-407
栏目:
综述
出版日期:
2018-04-25

文章信息/Info

Title:
Research progress of the comprehensive utilization of cow dung biomass resources
作者:
游洋吴波胡国全何明雄
1农业部沼气科学研究所,生物质能技术研究中心 成都 610041 2农业部农村可再生能源开发与利用重点实验室 成都 610041
Author(s):
YOU Yang WU Bo HU Guoquan HE Mingxiong
1 Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China 2 Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
关键词:
牛粪沼液木质纤维素生物基产品综合利用
Keywords:
cow dung biogas slurry lignocellulose bio-based?product comprehensive utilization
分类号:
X713
DOI:
10.19675/j.cnki.1006-687x.2017.05007
摘要:
畜禽粪便是一种重要的廉价生物质资源,含有丰富的木质纤维素和矿质营养,但随意堆弃必然会对环境形成污染,同时造成资源浪费. 为促进实现畜禽粪便的循环再生利用,从牛粪肥料化利用、能源化利用和化学品生产原料3个方面综述牛粪生物质资源的研究进展,分析不同处理方式对牛粪利用效率的影响. 肥料化利用在一定程度上能消解环境中的牛粪,但因生产成本高、资源利用率低等问题限制了其大规模推广. 而牛粪厌氧发酵能产生清洁能源沼气,结合厌氧共发酵方式可以提高甲烷产率,并且发酵后的沼液可用于浸种和生物农药利用;同时牛粪可以作为制取乙醇的新型原料,通过分子生物学手段构建重组运动发酵单胞菌,扩大菌株的底物利用范围. 此外,牛粪作为乳酸、富马酸、纤维素等生物基产品的生产原料,丰富了牛粪利用方式. 最后提出在牛粪利用过程中加强对重金属和抗生素的脱除,着力研究沼气工程建设技术,稳定发酵温度,提高产率,同时构建糖利用范围广、乙醇得率高的菌株,发展多重牛粪利用方式,以实现牛粪生物质资源的高值高效利用. (图1 表1 参74)
Abstract:
Cow dung is a relatively cheap biomass resource that includes lignocellulose and mineral nutrients. However, random stack damages the environment, and wastes natural resources. To effectively utilize and recycle livestock manure, we reviewed the latest research of the comprehensive utilization of cow dung biomass resources regarding fertilizer utilization, energy utilization, and chemical production. Traditional fertilizer utilization could reduce environmental pollution in a certain extent, but high production cost and low resource utilization rates limited its large-scale promotion. However, biogas could be produced from cow dung through anaerobic fermentation; its slurry could also be used for seed soaking and biological pesticides after anaerobic fermentation. Meanwhile, cow dung could be used as a potential raw material for bio-ethanol production using Zymomonas mobilis to enhance the substrate utilization using a molecular biology method. In addition, cow dung could be used as a raw material for lactic acid, fumaric acid, and cellulose bio-based chemical production, which could enhance its utilization. Finally, we proposed that the removal of heavy metals and antibiotics should be enhanced and focus placed on biogas development technology to stabilize the fermentation temperature and improve the production rate. Simultaneously, this study suggested developing extensive sugar utilization and high ethanol yield to realize the high value and efficient utilization of cow dung biomass resources.

参考文献/References:

1 Zheng YH, Li ZF, Feng SF, Lucas M, Wu GL, Li Y. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: a case study in a typical agro-village of Shandong, China [J]. Renew Sust Energ Rev, 2010, 14 (9): 3132-3139
2 胡璐, 董峻. 畜禽粪污资源化利用亟待综合施策[N]. 经济参考报, 2017-02-06 (7) [Hu L, Dong J. The resource utilization of livestock and poultry manure needs to be integrated urgently [N]. Economic Reference, 2017-02-06 (7) ]
3 刘春龙, 袁立, 李忠秋. 我国牛粪生物质资源利用现状及发展趋势[C]//中国畜牧业协会牛业分会. 第六届中国牛业发展大会论文集, 重庆, 2011 [Liu CL, Yuan L, Li ZQ. The utilization status and development trend of cow manure biomass resources in China [C]. China Animal Agriculture Association. Proceedings of the 6th China Cattle Development Conference, Chongqing, 2014]
4 国辉, 袁红莉, 耿兵, 刘雪, 赵永坤, 朱昌雄. 牛粪便资源化利用的研究进展[J]. 环境科学与技术, 2013, 36 (5): 68-75 [Guo H, Yuan HL, Geng B, Liu X, Zhao YK, Zhu CX. Research progress in resource utilization of cattle manure [J]. Environ Sci Technol, 2013, 36 (5): 68-75]
5 Liao W, Liu Y, Liu C, Wen Z, Chen S. Acid hydrolysis of fibers from dairy manure [J]. Biores Technol, 2006, 97 (14): 1687-1695
6 袁立, 王占哲, 刘春龙. 国内外牛粪生物质资源利用的现状与趋势[J]. 中国奶牛, 2011 (5): 3-9 [Yuan L. Wang ZZ, Liu CL. Current situation and trend of cow dung biomass resources at home and abroad [J]. China Dairy Cattle, 2011 (5): 3-9]
7 孟安华. 牛粪有机肥培肥土壤的机理及不同作物的激发效应[D]. 长春: 吉林农业大学, 2015 [Meng AH. Mechanism of cattle manures improving soil fertility stimulatory effects of different crops [D].Changchun: Jilin Agricultural University, 2015]
8 施宠, 张小娥, 沙依甫加玛丽, 金俊香, 黄常福, 贾宏涛. 牛粪堆肥不同处理全N、P、K及有机质含量的动态变化[J]. 中国牛业科学, 2010 (4): 26-29 [Shi C, Zhang XE, Jiamali S, Lin JX, Huang CF, Jia HT. Dynamic changes of total N, P, K and organic matter in different treatments on cattle manure composting [J]. China Cattle Sci, 2010 (4): 26-29]
9 任静, 王丽君, 胡琳莉, 周德霞, 郁继华, 张国斌. 3种外源菌剂对牛粪堆肥中微生物群落的影响[J]. 甘肃农业大学学报, 2013, 48 (6): 59-63 [Ren J, Wang LJ, Hu LL, Zhou DX, Yu JH, Zhang GB. Effects of three exogenous microbial agents on microbial community in cow manure composting [J]. J Gansu Agric Univ, 2013, 48 (6): 59-63]
10 李治宇. 棉秆木醋液对牛粪堆肥过程重金属(Cu、Zn)钝化作用的调控研究[D]. 阿拉尔: 塔里木大学, 2015 [Li ZY. Research the passivation of cotton stalk wood vinegar on heavy metals (Cu, Zn) during cow dung composting process [D]. Alard: Tarim University, 2015]
11 周岭, 李治宇, 石长青, 刘飞, 孙金龙, 秦翠兰, 王磊元. 基于灰色系统理论的木醋液对牛粪堆制中重金属(Cu、Zn)钝化作用预测模型[J]. 生态科学, 2016, 35 (1): 147-153 [Zhou L, Li ZY, Shi CQ, Liu F, Sun JL, Qin CL, Wang LY. The passivation effect prediction model of wood vinegar on heavy metals (Cu, Zn) during cow dung compost process based on gray system theory [J]. Ecol Sci, 2016, 35 (1): 147-153]
12 张云峰, 刘福元, 王学进, 曲永清. 规模化奶牛场粪便好氧堆肥发酵研究[J]. 家畜生态学报, 2015 (2): 75-79 [Zhang YF, Liu FY, Wang XJ, Qu YQ. Study on aerobic fermentation of dairy manure composting in large-scale farms [J]. Acra Ecol Anim Domast, 2015 (2): 75-79]
13 张树清, 张夫道, 刘秀梅, 王玉军, 张建峰. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 65 (2): 337-343 [Zhang SQ, Zhang FD, Liu XM, Wang YJ, Zhang JF. Degradation of antibiotics and pPassivation of heavy metals during thermophilic composting process [J]. Sci Agric Sin, 2006, 65 (2): 337-343]
14 刘程, 杨丹. 浓缩沼液对结球生菜产量及抗软腐病的影响[J]. 园艺与种苗, 2016 (1): 30-42 [Liu C, Yang D. Effect of concentrated biogas slurry on yield and soft rot resistance of head lettuce [J]. Horticult Seed, 2016 (1): 30-42]
15 李伟群. 不同浓度沼液叶面肥对黄瓜品质及产量的影响[J]. 北方园艺, 2009 (12): 65-66 [Li WQ. Effect of different concentration of biogas slurry and foliar fertilizer on quality and yield of cucumber [J]. N Horticult, 2009 (12): 65-66]
16 林积秀. 沼液在防治柑桔红蜘蛛上的应用[J]. 中国沼气, 2005 (3): 45-47
17 韩振莲, 曾淑娟, 师晓爽, 蔡超, 王乙潜, 袁宪正, 郭荣波. 沼液培养对小球藻的生长与生化组分的影响[J]. 山东化工, 2016 (5): 18-21 [Han ZL, Zeng SJ, Shi XS, Cai C, Wang YQ, Yuan XZ, Guo RB. Growth model and biochemical compositions of Chlorella vulgaris in anaerobically digested dairy slurry cultivation medium [J]. Shandong Chem Ind, 2016 (5): 18-21]
18 薛慧玲, 董志红, 方杨, 靳艳玲, 赵海. 水生能源植物浮萍生产燃料乙醇[J]. 可再生能源, 2013 (7): 55-59 [Xue HL, Dong ZH, Fang Y, Ji YL, Zhao H. Producing fuel ethanol from energy hygrophyte duckweed [J]. Ren Energy Res, 2013 (7): 55-59]
19 Shen N, Wang Q, Zhu J, Qin Y, Liao S, Li Y, et al. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137 [J]. Bioresour Technol, 2016 (211): 307-312
20 Kavacik B, Topaloglu B. Biogas production from co-digestion of a mixture of cheese whey and dairy manure [J]. Biomass Bioenergy, 2010, 34 (9): 1321-1329
21 El-Mashad HM, Zhang R. Biogas production from co-digestion of dairy manure and food waste [J]. Bioresour Technol, 2010, 101 (11): 4021-4028
22 You Y, Liu S, Wu B, Wang YW, Zhu QL, Qin H, Tan FR, Ruan ZY, Ma KD, Dai LC, Zhang M, Hu GQ, He MX. Bio-ethanol production by Zymomonas mobilis using pretreated dairy manure as a carbon and nitrogen source [J]. RSC Adv, 2017, 7 (7): 3768-3779
23 Wen Z, Liao W, Chen S. Production of cellulase by Trichoderma reesei from dairy manure [J]. Bioresour Technol, 2005, 96 (4): 491-499
24 Liao W, Liu Y, Frear C, Chen S. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344 [J]. Bioresour Technol, 2008, 99 (13): 5859-5866
25 Sun J, Zhu J, Li W. l-(+) lactic acid production by Rhizopus oryzae using pretreated dairy manure as carbon and nitrogen source [J]. Biomass Bioenergy, 2012 (47): 442-50
26 Yao W, Wu X, Zhu J, Sun B, Miller C. Utilization of protein extract from dairy manure as a nitrogen source by Rhizopus oryzae NRRL-395 for l-lactic acid production [J]. Bioresour Technol, 2010, 101 (11): 4132-4138
27 Liu XR, Jiang WJ, Yu HJ, Ning XJ. Effects of diluted biogas slurry as fertilizer on growth and yield of tomato in greenhouse [J]. Acta Horticult, 2012 (927): 295-300
28 张玲玲, 李兆华, 刘化吉, 刘淑娣, 王娅丽, 何友才, 张华祥. 水培芹菜净化不同浓度沼液的试验研究[J]. 长江流域资源与环境, 2011 (S1): 154-158 [Zhang LL, Li ZH, Liu HJ, Liu SD, Wang YL, He YC, Zhang HX. Waterpurification of aquatic culticated celery in the diluted slurry with different concentrations [J]. Res Environ Yangtze Basin, 2011 (S1): 154-158]
29 Wentzel S, Joergensen RG. Effects of biogas and raw slurries on grass growth and soil microbial indices [J]. J Plant Nutr Soil Sci, 2016, 179 (2): 215-22
30 牛歆雨, 刘林, 张良英. 不同叶面肥对‘嘎啦’苹果枝条生长和果实品质的影响[J]. 中国园艺文摘, 2016 (1): 30-31, 110 [Niu XY, Liu L, Zhang LY. Effects of different foliar fertilizer on the growth and fruit quality of the apple [J]. Chin Horticult Abstr, 2016 (1): 30-31, 110]
31 雍山玉, 桑得福. 不同浓度沼液浸种对柴胡种子发芽率的影响[J]. 中国沼气, 2013 (6): 57-58 [Yong SY, Sang DF. Effect of seed soaking with different concentration of biogas slurry on germination of radix buplenri [J]. China Biogas, 2013 (6): 57-58]
32 袁大刚, 刘成, 蒲光兰, 吴德勇. 沼液浸种对万寿菊种子发芽及幼苗生长的影响[J]. 中国中药杂志. 2011, 36 (7): 817-22 [Yuan DG, Liu C, Pu GL, Wu DY. Effects of seed soaking with biogas slurry on seed germination and seedling growth of Tagetes erecta [J]. China J Chin Mat Med, 2011, 36 (7): 817]
33 Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization [J]. Bioresour Technol, 2009, 100 (22): 5478-5484
34 Beneragama N, Lateef SA, Iwasaki M, Yamashiro T, Umetsu K. The combined effect of cefazolin and oxytertracycline on biogas production from thermophilic anaerobic digestion of dairy manure [J]. Bioresour Technol, 2013 (133): 23-30
35 Carlini M, Castellucci S, Moneti M. Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor [J]. Energy Proc, 2015 (82): 811-818
36 Comino E, Riggio VA, Rosso M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey [J]. Bioresour Technol, 2012 (114): 46-53
37 关正军, 李文哲, 郑国香, 毕兰平. 固液分离对牛粪利用效果的影响[J]. 农业工程学报, 2011, 27 (4): 259-263 [Guan ZJ, Li WZ, Zheng GX, Bi LP. Effect of solid-liquid separation on utilization of cow dung [J]. Trans Chin Soc Agric Eng, 2011, 27 (4): 259-263]
38 Li Q, Zheng L, Qiu N, Cai H, Tomberlin JK, Yu Z. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production [J]. Waste Manage, 2011, 31 (6): 1316-1320
39 Cai D, Dong Z, Wang Y, Chen C, Li P, Qin P. Biorefinery of corn cob for microbial lipid and bio-ethanol production: an environmental friendly process [J]. Bioresour Technol, 2016 (211): 677-684
40 Widodo Y, Wahyuningsih S, Ueda A. Sweet potato production for bio-ethanol and food related industry in Indonesia: challenges for sustainability [J]. Proc Chem, 2015 (14): 493-500
41 申乃坤, 赵海, 甘明哲, 靳艳玲, 周玲玲, 戚天胜. 鲜甘薯原料的运动发酵单胞菌快速乙醇发酵条件[J]. 应用与环境生物学报, 2009, 15 (3): 405-409 [Shen NK, Zhao H, Gan MZ, Ji YL, Zhou LL, Qi TS. Rapid ethanol production from fresh sweet potato [J]. Chin J Appl Environ Biol, 2009, 15 (3): 405-409]
42 Yawson SK, Liao PH, Lo KV. Two-Stage dilute acid hydrolysis of dairy manure for nutrient release, solids reduction and reducing sugar production [J]. Nat Res, 2011, 2 (4): 224-233
43 李静, 凌娟, 刘茂昌, 傅蕴辉, 晏飞来, 徐静静, 鲁伦惠, 颜冬. 超声波和碱联合预处理对畜禽粪便乙醇化的比较研究[J]. 重庆师范大学学报(自然科学版), 2008 (4): 82-85 [Li J, Ling J, Liu MC, Fu YH, Yan FL, Xu JJ, Lu LH, Yan D. Comparative study of ethanolization of animal manure by ultrasound-assisted alkali and alkali pretreatment [J]. J Chongqing Norm Univ (Nat Sci Ed), 2008 (4): 82-85]
44 何明雄, 祝其丽, 潘科, 胡启春. 利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J]. 应用与环境生物学报, 2009, 15 (4): 579-584 [He MX, Zhu QL, Pan K, Hu QC. Progress in ethanol production with lignocellulosic biomass by different recombinant strains [J]. Chin J Appl Environ Biol, 2009, 15 (4): 579-584]
45 Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: an alternative ethanol producer [J]. J Chem Technol Biotechnol, 2006, 81 (4): 623-635
46 Seo JS, Chong HY, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Lee KJ, Kang HS. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4 [J]. Nat Biotechnol, 2005, 23(1): 63-68
47 Yang SH, Pappas KM, Hauser LJ, Land ML, Chen GL, Hurst GB, Pan C, Kouvelis VN, Typas MA, Pelletier DA, Klingeman DM, Chang YJ, Samatova NF, Brown SD. Improved genome annotation for Zymomonas mobilis [J]. Nat Biotechnol, 2009, 27 (10): 893-894
48 Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, Zhu QL, Hu QC, Ruan ZY, He MX. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein [J]. Appl Microbiol Biotechnol, 2015, 99 (12): 5363-5371
49 Deanda K, Zhang M, Eddy C, Picataggio S. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering [J]. Appl Environ Microbiol, 1996, 62 (12): 4465-4470
50 Zhang X, Wang T, Zhou W, Jia X, Wang H. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses [J]. Microb Cell Factories, 2013, 12 (1): 1-12
51 Kim IS, Barrow KD, Rogers PL. Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5) [J]. Appl Environ Microbiol, 2000, 66 (1): 186-193
52 Krishnan MS, Blanco M, Shattuck CK, Nghiem NP, Davison BH. Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5) [J]. Appl Biochem Biotechnol, 2000, 84 (86): 525-541
53 Wen Z. Hydrolysis of animal manure lignocellulosics for reducing sugar production [J]. Bioresour Technol, 2004, 91 (1): 31-39
54 Kremer TA, LaSarre B, Posto AL, McKinlay JB. N(2) gas is an effective fertilizer for bioethanol production by Zymomonas mobilis [J]. PNAS, 2015, 112 (7): 2222-2226
55 Wang C. Study on microbial oil production with Chlorella cultured in biogas slurry [J]. Chin J Environ Eng, 2010, 4 (8): 1753-1758
56 Zhu L, Yan C, Li Z. Microalgal cultivation with biogas slurry for biofuel production [J]. Bioresour Technol, 2016 (220): 629-636
57 M?ller K, Stinner W, Deuker A, Leithold G. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems [J]. Nutr Cycl Agroecosyst, 2008, 82 (3): 209-232
58 迟磊, 姚长洪, 王茜, 薛松. 利用沼液培养海洋微藻湛江等鞭金藻[J]. 生物加工过程, 2016 (1): 49-53, 64 [Chi L, Yao CH, Wang Q, Xu S. Using biogas slurry for cultivation of marine microalga isochrysis zhangjiangensis [J]. Chin J Bioprocess Eng, 2016 (1): 49-53, 64]
59 Chowdhury R, Freire F. Bioenergy production from algae using dairy manure as a nutrient source: life cycle energy and greenhouse gas emission analysis [J]. Appl Energy, 2015 (154): 1112-1121
60 Hena S, Fatimah S, Tabassum S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production [J]. Water Res Ind, 2015 (10): 1-14
61 Uggetti E, Passos F, Solé M, García J, Ferrer I. Biogas from algae via anaerobic digestion [M]//Bux F, Chisti Y. Algae Biotechnology: Products and Processes. Berlin: Springer International Publishing, 2016: 195-216
62 Cheng B, Ge Z, Zhang H, Zhao Y, Sun S, Hu C. Nutrient removal and biogas upgrading by microalgal strains cultured in anaerobic digested starch wastewater [J]. J Chem Technol Biotechnol, 2016, 91 (12): 3028-3034
63 Ji M-K, Abou-Shanab RAI, Hwang J-H, Timmes TC, Kim H-C, Oh Y-K, Jeon B-H. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus [J]. J Environ Eng, 2013, 139 (9): 1198-1205
64 李妍, 席运官, 徐欣. 浮萍净化与资源化利用沼液初步研究[J]. 安徽农业科学, 2012 (34): 16739-16740, 16774 [Li Y, Xi YG, Xu X. Initial study on purification and resource utilization of the biogas slurry by duckweed [J]. J Anhui Agric Sci, 2012 (34): 16739-16740, 16774]
65 黄辉. 浮萍混养体系对养猪场废水厌氧消化液的处理效果[J]. 安徽农业科学, 2008 (31): 13831-13832 [Huang H. Treatment effects of anaerobic digestive juice of swine wastewater by duckweed-polycultured system [J]. J Anhui Agric Sci, 2008 (31): 13831-13832]
66 Marcato CE, Pinelli E, Cecchi M, Winterton P, Guiresse M. Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry [J]. Ecotoxicol Environ Saf, 2009, 72 (5): 1538-1544
67 Yao W, Wu X, Zhu J, Sun B, Miller C. L-Lactic acid fermentation by Rhizopus oryzae using dairy manure as a nitrogen source [J]. Trans Asabe, 2009 (52): 2047-2054
68 Yang ST, Zhang K, Zhang B, Huang H. Fumaric acid [M]//Murray M-Y. Comprehensive Biotechnology. 2nd ed. Netherlands: Elsevier, 2011, 66 (1): 163-177
69 Lohbeck K, Haferkorn H, Fuhrmann W, Fedtke N. Maleic and fumaric acids [J]. Anal Chem, 1954 (9): 1454-1459
70 Roa Engel CA, van Gulik WM, Marang L, van der Wielen LA, Straathof AJ. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae [J]. Enzyme Microb Technol, 2011, 48 (1): 39-47
71 Xu Q, Li S, Fu Y, Tai C, Huang H. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production [J]. Bioresour Technol, 2010, 101 (15): 6262-6264
72 Wen Z, Liao W, Chen S. Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure [J]. Process Biochem, 2005, 40 (9): 3087-3094
73 Zhang L, Liu Y, Niu X, Liu Y, Liao W. Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis [J]. Biomass Bioenergy, 2012 (37): 16-24
74 Zhang Q, Shen S, Yang S, Yang Q, Li G. Energy balance model and method of the ecotypic orchard with biogas digester as a link in mid region of China [J]. Acta Energ Solar Sin, 2003, 24 (6): 765-770

相似文献/References:

[1]王蓓,孙庚,罗鹏,等.模拟升温和放牧对高寒草甸土壤微生物群落的影响[J].应用与环境生物学报,2011,17(02):151.[doi:10.3724/SP.J.1145.2011.00151]
 WANG Bei,SUN Geng,LUO Peng,et al.Microbial Communities of Alpine Meadow Soil in the Eastern Qinghai-Tibetan Plateau Subjected to Experimental Warming and Grazing[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):151.[doi:10.3724/SP.J.1145.2011.00151]
[2]郝鲜俊,洪坚平,乔志伟.沼液对甘蓝连作土壤生物学性质的影响[J].应用与环境生物学报,2011,17(03):384.[doi:10.3724/SP.J.1145.2011.00384]
 HAO Xianjun,HONG Jianping,QIAO Zhiwei.Effect of Biogas Slurry on Biological Properties of Cabbage Continuous Cropping Soil[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):384.[doi:10.3724/SP.J.1145.2011.00384]
[3]王钦琪,李环,王翠,等.沼液培养的普通小球藻对CO2的去除[J].应用与环境生物学报,2011,17(05):700.[doi:10.3724/SP.J.1145.2011.00700]
 WANG Qinqi,LI Huan,WANG Cui,et al.Reduction of CO2 by Chlorella vulgaris Cultured in Biogas Slurry[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):700.[doi:10.3724/SP.J.1145.2011.00700]
[4]刘新民,陈海燕,峥嵘,等.内蒙古典型草原羊粪和牛粪的分解特征[J].应用与环境生物学报,2011,17(06):791.[doi:10.3724/SP.J.1145.2011.00791]
 LIU Xinmin,CHEN Haiyan,Zhengrong,et al.Decomposition of Sheep and Cattle Dung in a Steppe in Inner Mongolia, China[J].Chinese Journal of Applied & Environmental Biology,2011,17(02):791.[doi:10.3724/SP.J.1145.2011.00791]

更新日期/Last Update: 2018-04-25