|本期目录/Table of Contents|

[1]陈强,刘建,陈丹阳,等.中华猕猴桃EIN3/EIL转录因子家族的成员鉴定、系统进化和基因表达模式[J].应用与环境生物学报,2018,24(02):315-321.[doi:10.19675/j.cnki.1006-687x.2017.05006]
 CHEN Qiang,LIU Jian,CHEN Danyang,et al.Genome-wide identification, phylogenetic evolution, and gene expression pattern of EIN3/EIL transcription factors in Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):315-321.[doi:10.19675/j.cnki.1006-687x.2017.05006]
点击复制

中华猕猴桃EIN3/EIL转录因子家族的成员鉴定、系统进化和基因表达模式()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
315-321
栏目:
研究论文
出版日期:
2018-04-25

文章信息/Info

Title:
Genome-wide identification, phylogenetic evolution, and gene expression pattern of EIN3/EIL transcription factors in Actinidia chinensis
作者:
陈强刘建陈丹阳于丰源江梦柯郑玉凤牛向丽刘永胜黄胜雄
合肥工业大学食品科学与工程学院 合肥 230009
Author(s):
CHEN Qiang LIU Jian CHEN Danyang YU Fengyuan JIANG Mengke ZHENG Yufeng NIU Xiangli LIU Yongsheng HUANG Shengxiong
School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
关键词:
中华猕猴桃EIN3/EIL系统进化比较基因组学分析基因表达模式
Keywords:
kiwifruit EIN3/EIL phylogenetic evolution comparative genomic analysis gene expression pattern
分类号:
Q349.5 : S663.403
DOI:
10.19675/j.cnki.1006-687x.2017.05006
摘要:
EIN3/EIL家族是一类非常重要的转录因子,调控植物包括果实成熟在内的众多生长发育过程. 对中华猕猴桃EIN3/EIL家族进行系统的生物信息学和比较基因组学研究,在中华猕猴桃基因组中鉴定得到8个EIN3/EIL转录因子;其蛋白序列包括1个酸性氨基酸富集区、1个脯氨酸富集区以及5-7个碱性氨基酸富集区. 包括中华猕猴桃在内的20种植物的EIN3/EIL成员的系统进化树表明,EIN3/EIL基因在众多植物基因组中同时存在趋同和趋异的进化趋势. 中华猕猴桃EIN3/EIL基因家族成员的增加主要源于其进化过程中发生的全基因组三倍化倍增事件. 在果实成熟过程中,中华猕猴桃EIN3/EIL基因呈现组成型的高或低表达两种截然相反的基因表达趋势. 本研究鉴定得到了中华猕猴桃EIN3/EIL家族的成员,系统揭示了其成员蛋白序列中的保守区域、在不同植物物种中的进化趋势,植物基因组倍增所导致的家族成员增加,以及果实发育过程中表现出的显著的基因表达水平差异,可为中华猕猴桃EIN3/EIL基因的功能研究提供候选基因以及数据基础. (图5 表2 参25)
Abstract:
EIN3/EIL transcription factors play key roles in plants, widely regulating plant growth and development, especially fruit ripening. In this study, bioinformatics and comparative genomic studies were performed in the EIN3/EIL family members of Actinidia chinensis. Consequently, 8 EIN3/EIL genes were identified in the genome of A. chinensis. Their protein sequences included one highly acidic domain, one proline-rich domain, and 5–7 basic domains. In the phylogenetic tree of EIN3/EIL genes from 20 plant genomes, convergent and divergent evolution simultaneously existed in many plant species. EIN3/EIL gene expansions in A. chinensis resulted from whole genome triplication events. RNA-seq data indicated that EIN3/EIL genes represented two diametrical expression patterns during fruit development in A. chinensis. Our study identified the EIN3/EIL family members in A. chinensis and revealed the conserved regions in protein sequences among family members, the evolution tendency in different plant species, the member expansions resulting from plant genome duplications, and the significant differences of gene expression levels during fruit development. Our results will provide EIN3/EIL gene candidates, and a data foundation for the functional studies of EIN3/EIL genes in A. chinensis.

参考文献/References:

1 Chang C, Bleecker AB. Ethylene biology. More than a gas [J]. Plant Physiol, 2004, 136 (2): 2895-2899
2 Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation [J]. Plant Physiol, 2015, 169 (4): 2380-2390
3 Van de Poel B, Smet D, Van Der Straeten D. Ethylene and hormonal cross talk in vegetative growth and development [J]. Plant Physiol, 2015, 169 (1): 61-72
4 Jackson MB. Ethylene-promoted elongation: an adaptation to submergence stress [J]. Ann Bot, 2008, 101 (2): 229-248
5 Stepanova AN, Alonso JM. Ethylene signaling and response: where different regulatory modules meet [J]. Curr Opin Plant Biol, 2009, 12 (5): 548-555
6 Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive 3 and related proteins [J]. Cell, 1997, 89 (7): 1133-1144
7 An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H. Ethylene-induced stabilization of ethylene insensitive 3 and EIN3-like1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis [J]. Plant Cell, 2010, 22 (7): 2384-2401
8 Chen G, Alexander L, Grierson D. Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant [J]. J Exp Bot, 2004, 55 (402): 1491-1497
9 Tacken EJ, Ireland HS, Wang YY, Putterill J, Schaffer RJ. Apple EIN3 binding F-box 1 inhibits the activity of three apple EIN3-like transcription factors [J]. AoB Plants, 2012, 2012: pls034
10 Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening [J]. J Exp Bot, 2012, 63 (14): 5171-5187
11 Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis [J]. PLoS Genet, 2014, 10 (10): e1004664
12 Hibi T, Kosugi S, Iwai T, Kawata M, Seo S, Mitsuhara I, Ohashi Y. Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants [J]. J Exp Bot, 2007, 58 (13): 3671-3678
13 Park YS, Im MH, Ham KS, Kang SG, Park YK, Namiesnik J, Leontowicz H, Leontowicz M, Katrich E, Gorinstein S. Nutritional and pharmaceutical properties of bioactive compounds in organic and conventional growing kiwifruit [J]. Plant Foods Hum Nutr, 2013, 68 (1): 57-64
14 Montefiori M, McGhie TK, Costa G, Ferguson AR. Pigments in the fruit of red-fleshed kiwifruit (Actinidia chinensis and Actinidia deliciosa) [J]. J Agric Food Chem, 2005, 53 (24): 9526-9530
15 Hunter DC, Greenwood J, Zhang J, Skinner MA. Antioxidant and “natural protective” properties of kiwifruit [J]. Curr Top Med Chem, 2011, 11 (14): 1811-1820
16 Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X, Zhang X, Meng M, Yu J, Liu J, Han Y, Shi W, Zhang D, Cao S, Wei Z, Cui Y, Xia Y, Zeng H, Bao K, Lin L, Min Y, Zhang H, Miao M, Tang X, Zhu Y, Sui Y, Li G, Sun H, Yue J, Sun J, Liu F, Zhou L, Lei L, Zheng X, Liu M, Huang L, Song J, Xu C, Li J, Ye K, Zhong S, Lu BR, He G, Xiao F, Wang HL, Zheng H, Fei Z, Liu Y. Draft genome of the kiwifruit Actinidia chinensis [J]. Nat Commun, 2013, 4: 2640
17 Tang W, Zheng Y, Dong J, Yu J, Yue J, Liu F, Guo X, Huang S, Wisniewski M, Sun J, Niu X, Ding J, Liu J, Fei Z, Liu Y. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis) [J]. Front Plant Sci, 2016, 7: 335
18 Lee TH, Tang H, Wang X, Paterson AH. PGDD: a database of gene and genome duplication in plants [J]. Nucleic Acids Res, 2013, 41 (Database issue): D1152-1158
19 Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions [J]. Nucleic Acids Res, 2013, 41 (12): e121
20 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0 [J]. Bioinformatics, 2007, 23 (21): 2947-2948
21 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol, 2013, 30 (12): 2725-2729
22 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402
23 Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012, 485 (7400): 635-641
24 张雅玲, 方智振, 赖钟雄. 香蕉Ran家族基因的全基因组分析[J]. 江西农业大学学报, 2015, 37 (1): 157-162 [Zhang YL, Fang ZZ, Lai ZS. Genome-wide analysis of the ran gene family in banana (Musa acuminate) [J]. Acta Agric Univ Jiangxi, 2015, 37 (1): 157-162]
25 黄胜雄, 刘永胜. 土豆WRKY转录因子家族的生物信息学分析[J]. 应用与环境生物学报, 2013, 19 (2): 205-214 [Huang SX, Liu YS. Genome-wide analysis of WRKY transcription factors in Solanum tuberosum [J]. Chin J Appl Environ Biol, 2013, 19 (2): 205-214]
26 The French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature, 2007, 449 (7161): 463-467

相似文献/References:

[1]阳小成,王伯初,段传人,等.机械振荡对猕猴桃愈伤组织的生理效应[J].应用与环境生物学报,2002,8(01):36.
 YANG Xiaocheng,et al..Physiological effect of mechanical vibration on callus of Actinidia chinensis planch[J].Chinese Journal of Applied & Environmental Biology,2002,8(02):36.
[2]阳小成,王伯初,叶梅.不同强度的声波对猕猴桃试管苗根系发育的影响[J].应用与环境生物学报,2004,10(03):274.
 YANG Xiaocheng,et al..Effects of different sound intensities on root development of Actinidia chinensis plantlet[J].Chinese Journal of Applied & Environmental Biology,2004,10(02):274.
[3]孟蒙,唐维,刘嘉,等.基于中华猕猴桃“红阳”转录组序列开发EST-SSR分子标记[J].应用与环境生物学报,2014,20(04):564.[doi:10.3724/SP.J.1145.2013.12034]
 MENG Meng,TANG Wei,LIU Jia,et al.Development of EST-SSR markers in Actinidia chinesis cv ‘Hongyang’ based on transcriptomic sequences[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):564.[doi:10.3724/SP.J.1145.2013.12034]
[4]董婧,刘永胜,唐维.中华猕猴桃(Actinidia chinensis Planch)果实香气成分及相关基因表达[J].应用与环境生物学报,2018,24(02):307.[doi:10.19675/j.cnki.1006-687x.2017.05044]
 DONG Jing,LIU Yongsheng,TANG Wei,et al.Volatile components and their corresponding synthetic gene expression profile in the fruits of Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):307.[doi:10.19675/j.cnki.1006-687x.2017.05044]

更新日期/Last Update: 2018-04-25