|本期目录/Table of Contents|

[1]康琳琦,周天财,干友民,等.1984-2013年青藏高原土壤侵蚀时空变化特征[J].应用与环境生物学报,2018,24(02):245-253.[doi:10.19675/j.cnki.1006-687x.2017.04011]
 KANG Linqi,ZHOU Tiancai,GAN Youmin,et al.Spatial and temporal patterns of soil erosion in the Tibetan Plateau from 1984 to 2013[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):245-253.[doi:10.19675/j.cnki.1006-687x.2017.04011]
点击复制

1984-2013年青藏高原土壤侵蚀时空变化特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
245-253
栏目:
研究论文
出版日期:
2018-04-25

文章信息/Info

Title:
Spatial and temporal patterns of soil erosion in the Tibetan Plateau from 1984 to 2013
作者:
康琳琦周天财干友民孙建王金牛
1四川农业大学动物科技学院 成都 611130 2中国科学院地理科学与资源研究所生态网络观测与模拟重点实验室 北京 100101 3成都理工大学地球科学学院 成都 610059 4中国科学院成都生物所 成都 610041
Author(s):
KANG Linqi ZHOU Tiancai GAN Youmin SUN Jian WANG Jinniu
1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu?611130, China 2 Key?Laboratory?of?Ecosystem?Network?Observation?and?Modeling,?Institute?of Geographic Sciences?and?Natural?Resources?Research,?Chinese Academy of Sciences,?Beijing?100101, China 3 College?of?Earth?Science,?Chengdu?University?of?Technology,?Chengdu?610059, China 4 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
修正通用土壤流失方程(RUSLE)土壤侵蚀时空变化生态系统青藏高原
Keywords:
revised universal soil loss equation (RUSLE) soil erosion temporal and spatial variation ecosystem Tibetan Plateau
分类号:
S157.1
DOI:
10.19675/j.cnki.1006-687x.2017.04011
摘要:
土壤侵蚀严重威胁着区域生态安全与社会经济的发展乃至人类的共同福祉. 采用土壤侵蚀模型(RUSLE)得到青藏高原1984-2013年的土壤侵蚀情况,并分析土壤侵蚀强度的时空变化特征,探讨不同生态系统土壤侵蚀的变化特征及原因. 结果表明,1984-2013年青藏高原的土壤侵蚀量逐年波动变化,土壤侵蚀强度由南向北逐渐减弱,剧烈侵蚀主要分布在青藏高原南部(日喀则地区、拉萨市、昌都地区和山南北部地区). 其中灌木、高寒草甸和稀疏植被生态系统侵蚀强度较大;土壤侵蚀量最大的是高寒草甸生态系统(2.17 × 1010 t),其次是高寒草原(1.59 × 1010 t)和稀疏植被生态系统(1.30 × 1010 t). 海拔3 000-4 000 m的土壤侵蚀强度最大,但土壤侵蚀量最大的是海拔4 000-5 000 m的地区. 30年里,研究区主要生态系统土壤侵蚀量有所减少(-1.78 × 108 t/a). 其中,土壤侵蚀增加的区域主要包括羌塘高原南部地区和柴达木盆地外围地区;明显减少区域则分布于横断山脉—喜马拉雅山脉中部地区. 研究区主要植被生态系统覆盖度的增加有利于减少土壤侵蚀,但降雨量的改变主导了土壤侵蚀的变化. 降雨量增加导致低覆盖度且脆弱的高寒草原生态系统土壤侵蚀明显增强(增加量为1.19 × 108 t/a);森林和灌木生态系统由于稳定性较高且降雨量明显减少,土壤侵蚀减弱(减少量分别为-0.77 × 108 t/a和-1.65 × 108 t/a);稀疏植被系统土壤侵蚀量因降雨量的略微减少而少量减少(-0.44 × 108 t/a);虽然高寒草甸生态系统降雨量明显增加,但其较高的植被覆盖度在一定程度上削弱了降雨侵蚀力的变化,土壤侵蚀量有所减少(-0.11 × 108 t/a). 本研究揭示了青藏高原土壤侵蚀较为严重的地区、海拔及生态系统,分析了不同生态系统土壤侵蚀量变化可能的原因,可为水土流失的科学治理提供基础数据和理论参考. (图6 表4 参45)
Abstract:
Soil erosion has a critical effect on ecological security and socioeconomics, which may deteriorate ecosystem services and common human well-being. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion from 1984 to 2013 in the Tibetan Plateau and analyzed the temporal and spatial variation of soil erosion intensity. Furthermore, the temporal and spatial variation rates of soil erosion were explored across different ecosystems. The results indicated that the annual soil erosion fluctuated in the Tibetan Plateau, the soil erosion intensity decreased from south to north, and the most serious soil erosion was mainly distributed in the southern Tibetan Plateau (Xigaze and Changdu regions, Lhasa, and north of the Shannan region). The soil erosion intensity was higher in shrub, alpine meadow, and sparse vegetation ecosystems. The highest soil erosion was found in alpine meadow (2.17 × 1010 t), followed by alpine grassland (1.59 × 1010 t) and sparse vegetation (1.30 × 1010 t) ecosystems. Meanwhile, although the most serious soil erosion intensity was found in the regions of 3 000–4 000 m altitude, the soil erosion was mainly observed in the regions of 4 000–5 000 m altitude. In the three most recent decades, annual soil erosion decreased at a rate of -1.78 × 108 t/a. Additionally, soil erosion mainly increased in south of the Qiangtang Plateau and in the periphery of the Qaidam basin. Decreased soil erosion was mainly found along the Hengduan Mountains, central Himalayas. Although the increased annual normalized difference vegetation index (NDVI) had positive effects for soil protection, changes in soil erosion was mainly controlled by the change of annual precipitation. Thus, the fragility of ecological systems and increased rainfall erosivity accounted for the obviously increased soil erosion in the alpine grassland ecosystem (1.19 × 108 t/a). However, increased ecosystem stability and decreased rainfall erosivity contributed to the decreased soil erosion in forest and shrub ecosystems, by -0.77 × 108 t/a and -1.65 × 108 t/a, respectively. The slightly decreased rainfall erosivity accounted for a decrease of soil erosion in the sparse vegetation ecosystem (-0.44 × 108 t/a). Meanwhile, soil erosion has decreased in the alpine meadow ecosystem over the past 30 years, which may owing to the relatively higher NDVI that neutralized the increase of rainfall erosivity to some extent. This study revealed serious soil erosion regions and ecosystems in the Tibetan Plateau and explored possible reasons for variations in soil erosion in different ecosystems, which may provide a scientific reference for soil erosion conservation and control in the near future.

参考文献/References:

1. 傅伯杰, 邱扬, 王军, 陈利顶. 黄土丘陵小流域土地利用变化对水土流失的影响[J]. 地理学报, 2002, 57 (6): 717-722 [FU BJ, Qiu Y, Wang J, Chen LD. Effect simulations of land use change on the runoff and erosion for a gully catchment of the Loess Plateau, China [J]. Acta Geogr Sin, 2002, 57 (6): 717-722]
2. 孙鸿烈. 我国水土流失问题与防治对策[J]. 中国水利, 2011 (6): 1 [Sun HL. Countermeasures for the soil and water loss in China [J]. China Water Resour, 2011 (6): 16]
3. Wang Y, Wang G, Hu H, Cheng H. Erosion rates evaluated by the 137Cs technique in the high altitude area of the Qinghai–Tibet plateau of China [J]. Environ Geol, 2007, 53 (8): 1743-1749
4. Nie XJ, Wang XD, Liu SZ, Gu SX, Liu HJ. (137)Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau [J]. Appl Radiat Isot, 2010, 68 (9): 1650-1655
5. Shi P, Yan P, Yuan Y, Nearing MA. Wind erosion research in China: past, present and future [J]. Prog Phys Geogr, 2004, 28 (3): 366-386
6. Wang H, Jia X, Li K, LiY. Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: a major source area for East Asia dust storms [J]. Catena, 2015, 133: 373-384
7. Yan H, Wang S, Wang C, Zhang G, Patel N. Losses of soil organic carbon under wind erosion in China [J]. Global Change Biol, 2005, 11 (5): 828-840
8. Kong B, Yu H. Estimation model of soil freeze-thaw erosion in Silingco watershed wetland of Northern Tibet [J]. Sci World J, 2013, 2013 (3): 636521
9. Zhang J, Liu S, Yang S. The classification and assessment of freeze-thaw erosion in Tibet [J]. J Geogr Sci, 2007, 17 (2): 165-174
10. 许月卿, 邵晓梅. 基于GIS和RUSLE的土壤侵蚀量计算——以贵州省猫跳河流域为例[J]. 北京林业大学学报, 2006, 28 (4): 67-71 [Xu YQ, Shao XM. Estimation of soil erosion supported by GIS and RUSLE: a case study of Maotiaohe Watershed, Guizhou Province [J]. J Beijing For Univ, 2006, 28 (4): 67-71]
11. 黄金良, 洪华生孙, 张珞平, 杜鹏飞. 基于GIS和USLE的九龙江流域土壤侵蚀量预测研究[J]. 水土保持学报, 2004, 18 (5): 75-79 [Huang JL, Hong HS, Zhang LP, Du PF. Study on predicting soil erosion in Jiulong River watershed based on GIS and USLE [J]. J Soil Water Conserv, 2004, 18 (5): 75-79]
12. Fu B, LiuY, Lu Y, He C, ZengY, Wu B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China [J]. Ecol Complexity, 2011, 8 (4): 284-293
13. 吴楠, 何方, 高吉喜, 李玲, 罗遵兰. 淮河上游山丘区土壤保持功能变化及价值评估[J]. 安徽农业大学学报, 2010, 37 (1): 75-81 [Wu N, He F, Gao JX, Li L, Luo ZL. Dynamic change of soil retention function and evaluation on its economic value in mountainous area of Upper Huaihe River Basin [J]. J Anhui Agricul Univ, 2010, 37 (1): 75-81]
14. Pan J, Wen Y. Estimation of soil erosion using RUSLE in Caijiamiao watershed, China [J]. Nat Haz, 2013, 71 (3): 2187-2205
15. 于格, 鲁春霞, 谢高地. 青藏高原北缘地区高寒草甸土壤保持功能及其价值的实验研究[J]. 北京林业大学学报, 2006, 28 (4): 57-61 [Yu G, Lu CX, Xie GD. Soil conservation capacity of alpine meadow ecosystem and its economic value in the northern Qinghai-Tibetan Plateau [J]. J Beijing For Univ, 2006, 28 (4): 57-61]
16. 刘敏超, 李迪强, 温琰茂, 栾晓峰. 三江源地区土壤保持功能空间分析及其价值评估[J]. 中国环境科学, 2005, 25 (5): 627-631 [Liu MC, Li DQ, Wen YM, Luan XF. The spatial analysis of soil retention function in Sanjiangyuan region and its value evaluation [J]. China Environ Sci, 2005, 25 (5): 627-631]
17. 肖玉, 谢高地, 安凯. 青藏高原生态系统土壤保持功能及其价值[J]. 生态学报, 2003, 23 (11): 2367-2378 [Xiao Y, Xie GD, An K. The function and economic value of soil conservation of ecosystems in Qinghai-Tibet Plateau [J]. Acta Ecol Sin, 2003, 23 (11): 2367-2378]
18. 陈龙, 谢高地, 张昌顺, 李士美, 范娜, 张彩霞, 裴厦, 盖力强. 澜沧江流域土壤侵蚀的空间分布特征[J]. 资源科学, 2012, 34 (7): 1240-1247 [Chen L, Xie GD, Zhang CS, Li SM, Fan N, Zhang CX, Pei S, Ge LQ. Spatial distribution characteristics of soil erosionin Lancang River Basin [J]. Resourc Sci, 2012, 34 (7): 1240-1247]
19. 姜琳, 边金虎, 李爱农, 雷光斌, 南希, 冯文兰, 李刚. 岷江上游2000-2010年土壤侵蚀时空格局动态变化[J]. 水土保持学报, 2014, 28 (1): 18-35 [Jiang L, Bian JH, Li AN, Lei GB, Nan X, Feng WL, Li G. Spatial-temporal changes of soil erosion in the upper reaches of Minjiang River from 2000–2010 [J]. J Soil Water Conser, 2014, 28 (1): 18-35]
20. 贾俊姝, 陈金莲, 高欣, 万书勤, 高国雄. 基于RUSLE的大通县土壤侵蚀量估算[J]. 西北林学院学报, 2012, 27 (2): 56-61 [Jia JS, Chen JL, Gao X, Wan SQ, Gao GX. Estimation of soil erosion based on RUSLE in Datong county [J]. J NW For Univ, 2012, 27 (2): 56-61]
21. 郭丽霞, 沙占江, 陶炳德, 郭丽红, 张娟. 共和盆地塔拉滩土壤侵蚀潜在危险度评价[J]. 水土保持研究, 2013, 20 (2): 15-18 [Guo LX, Sha ZJ, Tao BD, Guo LH, Zhang J. Assessment on the degress of soil erosion potential risk in Tala Shoal of Gonghe basin [J]. Res Soil Water Conserv, 2013, 20 (2): 15-18]
22. 王雪璐. 青藏高原三江源高寒草地生态系统土壤侵蚀研究[D]. 兰州: 兰州大学, 2016 [Wang XL. Soil erosion of alpine grassland ecosystem on Tibetan Plateau Sanjiangyuan Region [D]. Lanzhou: Lanzhou University, 2016]
23. ShaoQ, Xiao T, Liu J, QiY. Soil erosion rates and characteristics of typical alpine meadow using 137Cs technique in Qinghai-Tibet Plateau [J]. Chin Sci Bull, 2011, 56 (16): 1708-1713
24. Wang Y, Niu F, Wu Q, Gao Z. Assessing soil erosion and control factors by radiometric technique in the source region of the Yellow River, Tibetan Plateau [J]. Quatern Res, 2017, 81 (3): 538-544
25. 邢宇, 姜琦刚, 李文庆, 白磊. 青藏高原湿地景观空间格局的变化[J]. 生态环境学报, 2009, 18 (3): 1010-1015 [Xing Y, Jiang QG, Li WQ, Bai L. Landscape spatial patterns changes of the wetland in Qinghai-Tibet Plateau [J]. Ecol Environ Sci, 2009, 18 (3): 1010-1015]
26. Sun J, Cheng GW, Li WP, Sha YK, Yang YC. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau [J]. Remote Sens, 2013, 5 (4): 1894-1911
27. Sun J, Qin XJ, Yang J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau [J]. Environ Monit Assess, 2016, 188 (1): 20-40
28. Wischmeier WH, Mannering JV. Relation of soil properties to its erodibility [J]. Soil Sci Soc Am Proc, 1969, 33 (1): 131-137
29. Yoder D. The future of RUSLE: Inside new revised universal soil loess equation. [J]. Soil Water Conserv, 1995, 50 (5): 484-489
30. 陈燕红, 潘文斌, 蔡芫镔. 基于RUSLE的流域土壤侵蚀敏感性评价—以福建省吉溪流域为例[J]. 山地学报, 2007, 25 (4): 490-496 [Chen YH, Pan WB, Cai YB. Assessment of soil erosion sensitivity in watershed based on RUSLE-A case study of Jixi Watershed [J]. J Mount Sci, 2007, 25 (4): 490-496]
31. 原立峰, 杨桂山, 李恒鹏, 张增信, 蒋志远, 刘星飞. 基于GIS和USLE的鄱阳湖流域土壤侵蚀敏感性评价[J]. 水土保持通报, 2013, 33 (5): 221-227 [Yuan LF, Yang GS, Li HP, Zhang ZX, Jiang ZY, Liu XF. Soil erosion sensitivity assessment for poyang lake basin based on GIS and USLE [J]. Bull Soil Water Conser, 2013, 33 (5): 221-227]
32. 刘斌涛, 陶和平, 史展, 宋春风, 郭兵. 青藏高原土壤可蚀性K值的空间分布特征[J]. 水土保持通报, 2014, 34 (4): 11-16 [Liu BT, Tao HP, Shi Z, Song CF, Guo B. Spatial distribution characteristics of soil erodibility K value in Qinghai-Tibet Plateau [J]. Bull Soil Water Conserv, 2014, 34 (4): 11-16]
33. 蔡崇法, 丁树文, 史志华, 黄丽, 张光远. 应用USLE和地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14 (2): 19-24 [Cai CF, Ding SW, Shi ZH, Huang L, Zhang GY. Study of applying USLE and geographical information system idrisi to predict soil erosion in small watershed [J]. J Soil Water Conserv, 2000, 14 (2): 19-24 ]
34. 齐述华, 蒋梅鑫, 于秀波. 基于遥感和ULSE 模型评价1995-2005年江西土壤侵蚀[J]. 中国环境科学, 2011, 31 (7): 1197-1203 [Qi SH, Jiang MX, Yu XB. Evaluating soil erosion in Jiangxi Province with USLE model and remote sensing technology during 1995-2005 [J]. China Environ Sci, 2011, 31 (7): 1197-1203]
35. 李天宏, 郑丽娜.基于RUSLE模型的延河流域2001-2010年土壤侵蚀动态变化[J]. 自然资源学报, 2012, 27 (7): 1164-1175 [Li TH, Zheng LN. Soil erosion changes in the Yanhe Watershed from 2001 to 2010 based on RUSLE Model [J]. J Nat Res, 2012, 27 (7): 1164-1175]
36. 赵磊, 袁国林, 张琰, 贺彬, 刘忠翰, 王志芸, 李靖. 基于GIS和USLE模型对滇池宝象河流域土壤侵蚀量的研究[J]. 水土保持通报, 2007, 27 (3): 42-46 [Zhao L, Yuan GL, Zhang Y, He B, Liu ZH, Wang ZY, Li J. The amount of soil erosion in Baoxiang watershed of Dianchi Lake based on GIS and USLE [J]. Bull Soil Water Conserv, 2007, 27 (3): 42-46]
37. 傅世锋, 查轩. 基于GIS和USLE的东圳库区土壤侵蚀量预测研究[J]. 地球信息科学, 2008, 10 (3): 390-395 [Fu SF, Zha X. Study on predicting soil erosion in Dongzhen watershed based on GIS and USLE [J]. Geo-inform Sci, 2008, 10 (3): 390-395]
38. SUN J, Cheng GW, Li WP, Sha YK, Yang YC. On the Variation of NDVI with the principal climatic elements in the Tibetan Plateau [J]. Remote Sens, 2013, 5 (4): 1894-1911
39. 李元寿, 王根绪, 王军德, 王一博, 吴青柏. 137Cs示踪法研究青藏高原草甸土的土壤侵蚀[J]. 山地学报, 2007, 25 (1): 114-121 [Li YS, Wang GX, Wang JD, Wang YB, WuQB. 137Cs trace technique to study soil erosion at Alpine Meadow of Tibetan Plateau [J]. J Mount Sci, 2007, 25 (1): 114-121]
40. 张海燕, 樊江文, 邵全琴, 张雅娴. 2000-2010年中国退牧还草工程区生态系统宏观结构和质量及其动态变化[J]. 草业学报, 2016, 25 (4): 1-15 [Zhang HY, Fan JW, Shao QQ, Zhang YX. Ecosystem dynamics in the ‘Returning Rangeland to Grassland Program, China [J]. Acta Pratacul Sin, 2016, 25 (4): 1-15]
41. SunJ, Wang XD, Cheng GW, Wu JB, Hong JT, Niu SL. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, Northern Tibetan Plateau [J]. PLoS ONE, 2014, 9 (9): 29-30
42. Yu BH, Lu CH, Lu TT. Regional differentiation of vegetation change in the Qinghai-Tibet Plateau [J]. Progr Geogr, 2009, 28 (3): 391-397
43. 王根绪, 丁永建, 王建, 刘时银. 近15年来长江黄河源区的土地覆被变化[J]. 地理学报, 2004, 59 (2): 163-173 [Wang GX, Ding YJ, Wang J, Liu SY. Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow Rivers in recent 15 years [J]. Acta Geogr Sin, 2004, 59 (2): 163-173]
44. 王根绪, 沈永平, 钱鞠, 王军德. 高寒草地植被覆盖变化对土壤水分循环影响研究[J]. 冰川冻土, 2003, 25 (6): 653-659 [Wang GX, Shen YP, Qian J, Wang JD. Study on the influence of vegetation change on soil moisture cycle in Alpine Meadow [J]. J Glaciol Geocryol, 2003, 25 (6): 653-659]
45. 李宝海, 杰布, 李顺凯, 陶杨. 藏北高原主要草地类型鼠害调查报告[J]. 西藏科技, 2007 (3): 29-30 [Li HB, Jie B, Li SK, Tao Y. The rat survey report for grasslands in northern Tibet plateau [J]. Tibet Technol, 2007 (3): 29-30]

相似文献/References:

[1]王金牛,孙庚,石福孙,等.汶川地震对典型亚热带森林地表径流和土壤侵蚀的影响[J].应用与环境生物学报,2013,19(05):766.[doi:10.3724/SP.J.1145.2013.00766]
 WANG Jinniu,SUN Geng,SHI Fusun,et al.Runoff and Soil Loss of a Typical Subtropical Forest Stricken by Wenchuan Earthquake[J].Chinese Journal of Applied & Environmental Biology,2013,19(02):766.[doi:10.3724/SP.J.1145.2013.00766]

更新日期/Last Update: 2018-04-25