|本期目录/Table of Contents|

[1]郑娜,柯林峰,杨景艳,等.来源于污染土壤的植物根际细菌对番茄幼苗的促生与盐耐受机制[J].应用与环境生物学报,2018,24(01):47-52.[doi:10.19675/j.cnki.1006-687x.2017.03031]
 ZHENG Na,KE Linfeng,YANG Jingyan,et al.Growth improvement and salt tolerance mechanisms of tomato seedlings mediated by plant growth-promoting rhizobacteria from contaminated soils[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):47-52.[doi:10.19675/j.cnki.1006-687x.2017.03031]
点击复制

来源于污染土壤的植物根际细菌对番茄幼苗的促生与盐耐受机制()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年01期
页码:
47-52
栏目:
研究论文
出版日期:
2018-02-09

文章信息/Info

Title:
Growth improvement and salt tolerance mechanisms of tomato seedlings mediated by plant growth-promoting rhizobacteria from contaminated soils
作者:
郑娜柯林峰杨景艳王雪飞黄典程万里李嘉晖郑龙玉喻子牛张吉斌
华中农业大学农业微生物学国家重点实验室,微生物农药国家工程研究中心,生命科学技术学院 武汉 430070
Author(s):
ZHENG Na KE Linfeng YANG Jingyan WANG Xuefei HUANG Dian CHENG Wanli LI Jiahui ZHENG Longyu YU ZiniuZHANG Jibin**
State Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
关键词:
根际促生菌番茄盐耐受促生
Keywords:
growth-promoting rhizobacteria tomato salt tolerance growth promotion
分类号:
Q945.79
DOI:
10.19675/j.cnki.1006-687x.2017.03031
摘要:
从来源于盐碱地和重金属污染地的8株菌中筛选对盐胁迫下番茄幼苗具有明显促生作用的菌株,并研究这些菌株的相关生物学特性及其对番茄幼苗的盐耐受机制,检测菌株产1-氨基-环丙烷-1-羧酸(ACC)酶活、吲哚乙酸(IAA)产量、解磷、生物膜形成能力、耐盐性和菌株对盐胁迫下植株叶片中的超氧化物歧化酶(SOD)、过氧化物酶(POD)活性,叶片中丙二醛(MDA)、脯氨酸和叶绿素含量的影响. 结果显示,其中4株菌(Pseudomonas protegens TM1109、Achromobacter sp. KY5104、Variovorax sp. TY4204和P. protegens KY4410)在0.7%盐胁迫下对番茄鲜重增长效果更好,增长率范围为33%-50%. 盐耐受机制研究结果显示TY4204和KY5104通过诱导或增强SOD和POD活性来清除番茄体内氧自由基对番茄的损伤. 它们也可以合成ACC脱氨酶来抗盐胁迫,同时通过降低叶片中MDA含量来减轻番茄在盐胁迫下的损伤. TM1109和KY4410虽然不产生ACC脱氨酶,IAA产量水平也较低,但可以在盐胁迫下通过诱导或增强SOD和POD活性来清除番茄体内氧自由基对番茄的损伤,具备溶解有机磷能力,且TM1109可溶解无机磷并具备良好的生物膜形成能力,有助于番茄对营养的吸收和生物膜对离子的选择性吸收以抵抗盐胁迫. 本研究表明TM1109、KY5104、TY4204和KY4410菌株可以通过多种作用机制来缓解番茄盐胁迫并促进番茄的生长. (表8 参22)
Abstract:
This study aimed to screen the strains that obviously improve plant growth under salt stress and explore their biological characteristics and salt tolerance mechanisms. The 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase enzyme activity, indoleacetic acid (IAA) content, biofilm construction ability, phosphorus solubilizing capability, and salt tolerance were determined; further, the superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA), chlorophyll, and proline contents in tomato leaves were measured under salt stress. In this study, eight rhizobacterial strains were isolated from an alkaline saline soil and soils contaminated with heavy metals; among them, four strains (Pseudomonas protegens TM1109, Achromobacter sp. KY5104, Variovorax sp. TY4204, and P. protegens KY4410) increased the rate of growth of tomato seedlings in saline (0.7% NaCl) soil from 33% to 50% and provided better increase in fresh weight than others. Seedlings treated with strains TY4204 and KY5104 exhibited increased SOD and POD activities. They also could synthesize ACC deaminase and reduce ethylene to resist salt stress, as well as reduce the content of MDA in tomato leaves to ease injury of tomato under salt stress. TM1109 and KY4410 did not produce ACC deaminase, and their IAA yield was low; however, they had the ability to eliminate the damage caused by oxygen free radicals in tomato by inducing or enhancing the activity of SOD and POD under salt stress. They also had organophosphorus solubilizing capability, and TM1109 also produced a copious biofilm and solubilized inorganic phosphate. It could be beneficial for tomato to resist salt stress through enhancing the absorption of nutrients and selective absorption of ions by biofilm. Our results indicate that TM1109, KY5104, TY4204, and KY4410 exploit different combinations of mechanisms that can promote the growth of tomato seedlings under salt stress.

参考文献/References:

1 Gupta SK, Innovative Saline Agriculture [M]. India: Springer, 2016: 18
2 Kohler J, Hernández JA, Caravaca F, Roldán A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress [J]. Environ Exp Bot, 2009, 65: 245-252
3 Rodriguez R, Redman R. More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis [J]. J Exp Bot, 2008, 59: 1109-1114
4 Glick BR. plant growth-promoting bacteria: mechanisms and applications [J]. Scientifica, 2012, 2012: 1-15
5 Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates [J]. PLoS ONE, 2011, 6: e17968
6 Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria [J]. Annu Rev Microbiol, 2009, 63: 541-556
7 Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria [J]. Environ Microbiol, 2005, 7: 1809-1817
8 Takemura T, Hanagata N, Dubinsky Z, Karube I. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza [J]. Trees, 2002, 16: 94-99
9 Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase–oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress [J]. J Hortic Sci Biotechnol, 2000, 75: 623-627
10 Mattioni C, Lacerenze N.G, Troccoli A, Deleonardis AM, Difonzo N. Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings [J]. Physiol Plant, 1997, 101: 787-792
11 Kasim WK, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM. Effect of?biofilm forming plant growth promoting rhizobacteria on salinity?in barley [J]. Ann Agric Sci, 2016, 61: 217-227
12 Wang XF, Mavrodi VD, Ke LF, Mavrodi VO, Yang MM, Thomashow SL, Zheng N, Weller MD, Zhang JB. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils [J]. Microb Biotechnol, 2015, 8 (3): 404-418
13 Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds [J]. Planta ,1999, 207: 604-611
14 方慧, 邹强, 何勇, 李晓丽. 基于高光谱的番茄叶片过氧化物酶活力测定[J]. 光谱学与光谱分析, 2012, 32 (8): 2228-2233 [Fang H, Zhou Q, He Y, Li XL. Determination of peroxidase activity in tomato leaves based on hyperspectral [J]. Spectrosc Spect Anal, 2012, 32 (8): 2228-2233]
15 Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution [J]. Environ Pollut, 2011, 159: 1277-1282
16 Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system [J]. Appl Environ Microb, 2002, 68: 3795-3801
17 Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms [J]. FEMS Microbiol Lett, 1999, 170: 265-270
18 Edi-Premoto M, Moawad AM, Vlek PLG. Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere [J]. Indonesian J Crop Sci, 1996, 11: 13-23
19 Barra PJ, Inostroza NG, Acu?a JJ, Mora ML, Crowley DE, Jorquera MA. Formulation of bacterial consortia from avocado (Persea americanaMill.) and their effect on growth, biomass andsuperoxide?dismutase?activity of wheat seedlings under?salt?stress [J]. Appl Soil Ecol, 2016, 102: 80-91
20 Li G, Wan SW, Zhou J, Yang ZY, Qin P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content,?malondialdehyde?and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to?salt?stress levels [J]. Ind Crops Prod, 2010, 31: 13-19
21 Jain M, Mathur G, Koul S, Sarin NB. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.) [J]. Plant Cell Rep, 200,0: 463-468
22 Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance [J]. Arch Microbiol, 2016, 198 (4): 379-387

相似文献/References:

[1]葛体达,黄丹枫** 芦波 唐东梅 宋世威.无机氮和有机氮对水培番茄幼苗碳水化合物积累及氮素吸收的影响*[J].应用与环境生物学报,2008,14(05):604.
[2]张春梅,邹志荣,张志新,等.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响[J].应用与环境生物学报,2009,15(03):301.[doi:10.3724/SP.J.1145.2009.00301]
 ZHANG Chunmei,ZOU Zhirong,ZHANG Zhixin,et al.Effects of Exogenous Spermidine on Reactive Oxygen Levels and Antioxidative System of Tomato Seedling under Polyethlene Glycol Stress[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):301.[doi:10.3724/SP.J.1145.2009.00301]
[3]刘继恺,高永峰,牛向丽,等.番茄HP1和HP2基因RNA共干涉载体的构建及遗传转化[J].应用与环境生物学报,2009,15(05):591.[doi:10.3724/SP.J.1145.2009.00591]
 LIU Jikai,GAO Yongfeng,NIU Xiangli & LIU Yongsheng.Construction and Transformation of Co-RNAi Vector of Tomato HP1 and HP2 Genes[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):591.[doi:10.3724/SP.J.1145.2009.00591]
[4]崔向超,胡君利,林先贵,等.丛枝菌根真菌与复硝酚钠在番茄育苗中的应用[J].应用与环境生物学报,2012,18(05):843.[doi:10.3724/SP.J.1145.2012.00843]
 CUI Xiangchao,HU Junli,LIN Xiangui,et al.Application of Arbuscular Mycorrhizal Fungi and Compound Sodium Nitrophenolate in Tomato Seedling Growth[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):843.[doi:10.3724/SP.J.1145.2012.00843]
[5]张治国,高永峰,苗敏,等.番茄SlWD1基因的克隆及SlWD1与DDB1的相互作用[J].应用与环境生物学报,2013,19(04):623.[doi:10.3724/SP.J.1145.2013.00623]
 ZHANG Zhiguo,GAO Yongfeng,MIAO Min,et al.Cloning of SlWD1 Gene and Interaction of SlWD1 with DDB1 in Tomato[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):623.[doi:10.3724/SP.J.1145.2013.00623]
[6]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):767.[doi:10.3724/SP.J.1145.2014.01033]
[7]张俊芳,唐晓凤,李欲翔,等.番茄SIZ1-like1基因的克隆与功能[J].应用与环境生物学报,2015,21(03):406.[doi:10.3724/SP.J.1145.2014.12016]
 ZHANG Junfang,TANG Xiaofeng,LI Yuxiang,et al.Cloning and function study of tomato SUMO E3 ligase SIZ1-like1 gene[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):406.[doi:10.3724/SP.J.1145.2014.12016]
[8]杨述章,高兰阳,孙晓春,等.过量表达SlWD6基因增强番茄抗旱和耐盐功能[J].应用与环境生物学报,2015,21(03):413.[doi:10.3724/SP.J.1145.2015.01006]
 YANG Shuzhang,GAO Lanyang,SUN Xiaochun,et al.Over-expressing SlWD6 gene to improve drought and salt tolerance of tomato[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):413.[doi:10.3724/SP.J.1145.2015.01006]
[9]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]

更新日期/Last Update: 2018-02-09