|本期目录/Table of Contents|

[1]王勇,任亚峰,李冬雪,等.热休克蛋白与植物病毒组分的互作机制研究进展[J].应用与环境生物学报,2018,24(02):415-424.[doi:10.19675/j.cnki.1006-687x.2017.03013]
 WANG Yong,REN Yafeng,LI Dongxue,et al.The interaction of heat shock proteins and some components of plant viruses[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):415-424.[doi:10.19675/j.cnki.1006-687x.2017.03013]
点击复制

热休克蛋白与植物病毒组分的互作机制研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年02期
页码:
415-424
栏目:
综述
出版日期:
2018-04-25

文章信息/Info

Title:
The interaction of heat shock proteins and some components of plant viruses
作者:
王勇任亚峰李冬雪陈卓
1贵州大学绿色农药与农业生物工程国家重点实验室培育基地 贵阳 550025
Author(s):
WANG Yong REN Yafeng LI Dongxue CHEN Zhuo
1 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China 2 College of Agriculture, Guizhou University, Guiyang 550025, China
关键词:
热休克蛋白植物病毒植物寄主互作机制
Keywords:
heat shock protein (Hsp) plant virus plant host interaction mechanism
分类号:
Q51 : S432
DOI:
10.19675/j.cnki.1006-687x.2017.03013
摘要:
1贵州大学绿色农药与农业生物工程国家重点实验室培育基地 贵阳 550025 2贵州大学农学院 贵阳 550025 摘 要 大量研究表明热休克蛋白(Heat shock protein,Hsp)作为分子伴侣蛋白,通过对招募蛋白的折叠、转运、定位、装配或降解等行为参与植物病毒的生命活动;明确病毒与植物寄主互作机制对于培育抗病毒品种和开发新型抗病毒农药具有重要意义. 本文概述了Hsp的分类、基因和蛋白结构及生物学意义;系统分析了Hsp70或Hsp90、植物寄主辅助因子、病毒的依赖RNA的RNA聚合酶等组分组装形成植物病毒复制酶复合体的机制,Hsp70、Hsp90和病毒组分互作及其亚细胞定位和调控病毒复制的机制;重点阐述了Hsp70与病毒组分互作及运动机制,以及病毒对植物寄主或病毒自身编码Hsp表达的影响,包括Hsps与病毒组分在胞内移动、胞间移动或长距离运动过程中的发生场所、参与要素、能量供应及物质转换机制,病毒诱导植物寄主Hsps表达的种类特异性、动态表达规律等. 目前研究主要集中在Hsps与病毒组分间“两-两”因素,还缺乏超分子复合体中以核酸、蛋白、多糖等为物质基础的多组分间协同机制的研究;建议加强招募蛋白与Hsp间的转位机制、Hsp与超分子蛋白复合体组分间的协作机制、超分子蛋白复合体与植物寄主组织结构间的关系等方面的研究. (图4 表1 参105)
Abstract:
Considerable research has indicated that heat shock proteins (Hsp), as molecular chaperones, carry out many biological activities of plant viruses by folding, transporting, translocating, assembling, or degrading client proteins. It is fundamental to develop resistant plant varieties and novel anti-viral agents by determining the interaction mechanisms between plant viruses and hosts. In this study, we first reviewed the classification, gene and protein structure, and biological significances. We then analyzed the assembling mechanism of Hsp70 or Hsp90, plant host cofactors, and RNA-dependent RNA polymerases in a viral replicase complex, and the mechanism of interaction and subcellular localization between Hsp70 and some plant virus components. We highlighted the mechanism of interaction and movement between Hsp70 and some plant virus components and the effect of Hsp expression of plant hosts or viruses. The results indicated where the mechanism occurred, the participating factors, energy supply, and material conversion between Hsps and the plant virus components for the course of the intracellular movement, local movement between cells, and long-distance movement, and showed the Hsp type specificity and the law of dynamic Hsp expression in plant hosts infected by viruses. The studies mainly focused on the two Hsp factors and the plant viral components, indicating limited coordination mechanisms among many nucleic acids, proteins, and polysaccharides in macromolecular protein complexes (MRC). Future research should analyze the translocation mechanism between client proteins and Hsps, the coordination mechanism between Hsps and MRC components, and the relation between MRC and the plant tissue structure.

参考文献/References:

1 吴剑, 宋宝安. 中国抗植物病毒药剂研究进展[J]. 中国科学化学, 2016, 46 (11): 1165-1179 [Wu J, Song BA. Research progress of anti-virus agents for plants in China [J]. Sci Sin Chin, 2016, 46 (11): 1165-1179]
2 谢联辉, 林奇英. 我国水稻病毒病研究的进展[J]. 中国农业科学, 1984, 6: 85-88 [Xie LH, Lin QY. Progress in the research of virus disease of rice in China [J]. Sci Agri Sin, 1984, 6: 85-88]
3 赫尔 R. 马修斯植物病毒学[M]. 4版. 北京: 科学出版社, 2007 [Hull R. Matthew’s Plant Virology [M]. 4th ed. Beijing: Science Press, 2007]
4 Serva S, Nagy PD. Proteomics analysis of the Tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication [J]. J Virol, 2006, 80 (5): 2162-2169
5 Karasev AV. Genetic diversity and evolution of Closteroviruses [J]. Annu Rev Phytopathol, 2000, 38: 293-324
6 Moshe A, Gorovits R, Liu YL, Czosnek H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by tomato yellow leaf curl virus infection [J]. Mol Plant Pathol, 2016, 17 (2): 247-260
7 Ritossa F. A new puffing pattern induced by heat shock and DNP in Drosophila [J]. Experientia, 1962, 18: 571-573
8 Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs [J]. J Mol Biol, 1974, 84: 389-398
9 Kocabiyik S. A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea [J]. FEMS Microbiol Rev, 1996, 18: 249-258
10 Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance [J]. J Appl Physiol, 2002, 92 (5): 2177-2186
11 Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants [J]. Curr Opin Plant Biol, 2007, 10 (3): 310-316
12 Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK. Heat shock proteins in toxicology: how close and how far? [J]. Life Sci, 2010, 86 (11-12): 377-384
13 Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana [J]. Cell Stress Chaperon, 2001, 6 (3): 201-208
14 Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends Plant Sci, 2004, 9 (5): 244-252
15 Mayer MP. Gymnastics of molecular chaperones [J]. Mol Cell, 2010, 39 (3): 321-331
16 Krishna P, Gloor G. The Hsp90 family of proteins in Arabidopsis thaliana [J]. Cell Stress Chaperon, 2001, 6 (3): 238-246
17 Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a novel target for cancer therapy [J]. Ann Oncol, 2003, 14 (8): 1169-1176
18 Pearl LH, Prodromou C. Structure and in vivo function of Hsp90 [J]. Curr Opin Struc Biol, 2000, 10 (1): 46-51
19 Pearl LH, Prodromou C. Structure, function, and mechanism of the Hsp90 molecular chaperone [J]. Adv Protein Chem, 2001, 59: 157-186
20 Prodromou C, Pearl LH. Structure and functional relationships of Hsp90 [J]. Curr Cancer Drug Tar, 2003, 3 (5): 301-323
21 Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery [J]. Annu Rev Biochem, 2006, 75: 271-294
22 Krukenberg KA, Street TO, Lavery LA, Agard DA. Conformational dynamics of the molecular chaperone Hsp90 [J]. Q Rev Biophys, 2011, 44 (2): 229-255
23 Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10 [J]. Cell Stress Chaperon, 2003, 8 (1): 53-61
24 Franck E, Madsen O, van Rheede T, Ricard G, Huynen MA, de Jong WW. Evolutionary diversity of vertebrate small heat shock proteins [J]. J Mol Evol, 2004, 59 (6): 792-805
25 Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J. Independent evolution of the core domain and its flanking sequences in small heat shock proteins [J]. FASEB J, 2010, 24 (10): 3633-3642
26 Sun Y, MacRae TH. Small heat shock proteins: molecular structure and chaperone function [J]. Cell Mol Life Sci, 2005, 62 (21): 2460-2476
27 van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic small heat shock protein [J]. Nat Struct Biol, 2001, 8 (12): 1025-1030
28 Alam SB, Rochon D. Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection [J]. J Virol, 2015, 90 (7): 3302-3317
29 Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones [J]. Annu Rev Biochem, 2001, 70: 603-647
30 Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol [J]. Nat Rev Mol Cell Biol, 2004, 5 (10): 781-791
31 Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights [J]. Nat Rev Mol Cell Biol, 2010, 11 (7): 515-528
32 Lindquist S, Craig EA. The heat-shock proteins [J]. Annu Rev Genet, 1988, 22: 631-677
33 Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. Some like it hot: the structure and function of small heat-shock proteins [J]. Nat Struct Mol Biol, 2005, 12 (10): 842-846
34 Kimmins S, MacRae TH. Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins [J]. Cell Stress Chaperones, 2000, 5 (2): 76-86
35 Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery [J]. Exp Biol Med (Maywood), 2003, 228 (2): 111-133
36 Pearl LH, Prodromou C, Workman P. The Hsp90 molecular chaperone: an open and shut case for treatment [J]. Biochem J, 2008, 410 (3): 439-453
37 Dickey CA, Koren J, Zhang YJ, Xu YF, Jinwal UK, Birnbaum MJ, Monks B, Sun M, Cheng JQ, Patterson C, Bailey RM, Dunmore J, Soresh S, Leon C, Morgan D, Petrucelli L. Akt and CHIP coregulate tau degradation through coordinated interactions [J]. Proc Natl Acad Sci USA, 2008, 105 (9): 3622-3627
38 Murata S, Chiba T, Tanaka K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones [J]. Int J Biochem Cell Biol, 2003, 35 (5): 572-578
39 Peteranderl R, Rabenstein M, Shin YK, Liu CW, Wemmer DE, King DS, Nelson HC. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor [J]. Biochemistry, 1999, 38 (12): 3559-3569
40 Goldenberg CJ, Luo Y, Fenna M, Baler R, Weinmann R, Voellmy R. Purified human factor activates heat shock promoter in a HeLa cell-free transcription system [J]. J Biol Chem, 1988, 263 (36): 19734-19739
41 Lindquist S. The heat-shock response [J]. Annu Rev Biochem, 1986, 55: 1151-1191
42 Phillips B, Abravaya K, Morimoto RI. Analysis of the specificity and mechanism of transcriptional activation of the human Hsp70 gene during infection by DNA viruses [J]. J Virol, 1991, 65 (11): 5680-5692
43 Wu BJ, Kingston RE, Morimoto RI. Human HSP70 promoter contains at least two distinct regulatory domains [J]. Proc Natl Acad Sci USA, 1986, 83 (3): 629-633
44 Larson JS, Schuetz TJ, Kingston RE. Activation in vitro of sequence-specific DNA binding by a human regulatory factor [J]. Nature, 1988, 335 (6188): 372-375
45 Sorger PK, Lewis MJ, Pelham HR. Heat shock factor is regulated differently in yeast and HeLa cells [J]. Nature, 1987, 329 (6134): 81-84
46 Wang Y, Dai Y, Tao X, Wang JZ, Cheng HY, Yang H, Ma XR. Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis [J]. Front Plant Sci, 2015, 6: 1226
47 Bharti K, Von Koskull-D?ring P, Bharti S, Kumar P, Tintschl-K?rbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1 [J]. Plant Cell, 2004, 16 (6): 1521-1535
48 Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution [J]. Biochim Biophys Acta, 2012, 1819 (2): 104-119
49 Verghese J, Abrams J, Wang Y, Morano KA. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system [J]. Microbiol Mol Biol Rev, 2012, 76 (2): 115-158
50 Mimnaugh EG, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin [J]. J Biol Chem, 1996, 271 (37): 22796-22801
51 Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90 [J]. Proc Natl Acad Sci USA, 1996, 93: 14536-14541
52 Chen B, Piel WH, Gui L, Bruford E, Monteiro A. The HSP90 family of genes in the human genome: insights into their divergence and evolution [J]. Genomics, 2005, 86 (6): 627-637
53 Miller P, DiOrio C, Moyer M, Schnur RC, Bruskin A, Cullen W, Moyer JD. Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins [J]. Cancer Res, 1994, 54 (10): 2724-2730
54 Chavany C, Mimnaugh E, Miller P, Bitton R, Nguyen P, Trepel J, Whitesell L, Schnur R, Moyer J, Neckers L. p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2 [J]. J Biol Chem, 1996, 271 (9): 4974-4977
55 Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor [J]. J Biol Chem, 1995, 270 (8): 3574-3581
56 Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH. A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock [J]. Mol Cell Biol, 1996, 16 (9): 4691-4699
57 Wu BJ, Kingston RE, Morimoto RI. Human HSP70 promoter contains at least two distinct regulatory domains [J]. Proc Natl Acad Sci USA, 1986, 83 (3): 629-633
58 Zimarino V, Wu C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis [J]. Nature, 1987, 327 (6124): 727-730
59 Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K. Flavonoids inhibit the expression of heat shock proteins [J]. Cell Struct Funct, 1990, 15 (6): 393-401
60 Mosser DD, Theodorakis NG, Morimoto RI. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol, 1988, 8 (11): 4736-4744
61 Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways [J]. BMC Genomics, 2007, 8 (125): doi 10.1186/1471-2164-8-125
62 Wang RY, Stork J, Nagy PD. A key role for heat shock protein 70 in the localization and insertion of Tombusvirus replication proteins to intracellular membranes [J]. J Virol, 2009, 83 (7): 3276-3287
63 Mathioudakis MM, Rodríguez-Moreno L, Sempere RN, Aranda MA, Livieratos I. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein [J]. Mol Plant Microbe Interact, 2014, 27 (12): 1356-1369
64 Pogany J, White KA, Nagy PD. Specific binding of Tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication [J]. J Virol, 2005, 79 (8): 4859-4869
65 Nagy PD, Pogany J. Yeast as a model host to dissect functions of viral and host factors in Tombusvirus replication [J]. Virology, 2006, 344 (1): 211-220
66 White KA, Nagy PD. Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination [J]. Prog Nucleic Acid Res Mol Biol, 2004, 78: 187-226
67 Serva S, Nagy PD. Proteomics analysis of the Tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication [J]. J Virol, 2006, 80 (5): 2162-2169
68 Mine A, Hyodo K, Tajima Y, Kusumanegara K, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus [J]. J Virol, 2012, 86 (22): 12091-12104
69 Gorovits R, Moshe A, Ghanim M, Czosnek H. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection [J]. PLoS ONE, 2013, 8 (7): e70280
70 Wang RY, Stork J, Pogany J, Nagy PD. A temperature sensitive mutant of heat shock protein 70 reveals an essential role during the early steps of Tombusvirus replication [J]. Virology, 2009, 394 (1): 28-38
71 Pogany J, Nagy PD. Activation of Tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro [J]. J Virol, 2015, 89 (10): 5714-5723
72 Pogany J, Stork J, Li Z, Nagy PD. In vitro assembly of the tomato bushy stunt virus replicase requires the host heat shock protein 70 [J]. Proc Natl Acad Sci USA, 2008, 105 (50): 19956-19961
73 Huang YW, Hu CC, Liou MR, Chang BY, Tsai CH, Meng M, Lin NS, Hsu YH. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA [J]. PLoS Pathog, 2012, 8 (5): e1002726
74 Gorovits R, Moshe A, Amrani L, Kleinberger R, Anfoka G, Czosnek H. The six Tomato yellow leaf curl virus genes expressed individually in tomato induce different levels of plant stress response attenuation [J]. Cell Stress Chaperon, 2017, doi 10. 1007/s12192-12017-10766-12190
75 Carrington JC, Kasschau KD, Mahajan SK, Schaad MC. Cell-to-cell and long-distance transport of viruses in plants [J]. Plant Cell, 1996, 8 (10): 1669-1681
76 Traynor P, Young BM, Ahlquist P. Deletion analysis of Brome mosaic virus 2a protein: effects on RNA replication and systemic spread [J]. J Virol, 1991, 65 (6): 2807-2815
77 Gal-On A, Kaplan I, Roossinck MJ, Palukaitis P. The kinetics of infection of zucchini squash by Cucumber mosaic virus indicate a function for RNA 1 in virus movement [J]. Virology, 1994, 205 (1): 280-289
78 Holt CA, Hodgson RA, Coker FA, Beachy RN, Nelson RS. Characterization of the masked strain of Tobacco mosaic virus: identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone [J]. Mol Plant Microbe In, 1990, 3 (6): 417-423
79 Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T. A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein [J]. Virology, 2010, 401 (1): 6-17
80 Napuli AJ, Falk BW, Dolja VV. Interaction between HSP70 homolog and filamentous virions of the Beet yellows virus [J]. Virology, 2000, 274: 232-239
81 Peremyslov VV, Hagiwara Y, Dolja VV. HSP70 homolog functions in cell-to-cell movement of a plant virus [J]. Proc Natl Acad Sci USA, 1999, 96 (26): 14771-14776
82 Medina V, Peremyslov VV, Hagiwara Y, Dolja VV. Subcellular localization of the HSP70-homolog encoded by Beet yellows closterovirus [J]. Virology, 1999, 260 (1): 173-181
83 Alzhanova DV, Napuli AJ, Creamer R, Dolja VV. Cell-to-cell movement and assembly of a plant Closterovirus: roles for the capsid proteins and Hsp70 homolog [J]. EMBO J, 2001, 20 (24): 6997-7007
84 Agranovsky AA, Boyko VP, Karasev AV, Koonin EV, Dolja VV. Putative 65 kDa protein of beet Yellows closterovirus is a homologue of HSP70 heat shock proteins [J]. J Mol Biol, 1991, 217 (4): 603-610
85 Wolf S, Deom CM, Beachy RN, Lucas WJ. Movement protein of Tobacco mosaic virus modifies plasmodesmatal size exclusion limit [J]. Science, 1989, 246 (4928): 377-379
86 Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves [J]. Cell, 1999, 97 (6): 743-754
87 van Lent J, Storms M, van der Meer F, Wellink J, Goldbach R. Tubular structures involved in movement of Cowpea mosaic virus are also formed in infected cowpea protoplasts [J]. J Gen Virol, 1991, 72 (Pt 11): 2615-2623
88 Perbal MC, Thomas CL, Maule AJ. Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts [J]. Virology, 1993, 195 (1): 281-285
89 Prokhnevsky AI, Peremyslov VV, Napuli AJ, Dolja VV. Interaction between long-distance transport factor and Hsp70-related MP of Beet yellows virus. J Virol, 2002, 76 (21): 11003-11011
90 Satyanarayana T, Gowda S, Mawassi M, Albiach-Martí MR, Ayllón MA, Robertson C, Garnsey SM, Dawson WO. Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly [J]. Virology, 2000, 278 (1): 253-265
91 Tian F, Rubio L, Yeh H-H, Crawford B, Falk BW. Lettuce infectious yellows virus: in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci [J]. J Gen Virol, 1999, 80 (Pt 5) (5): 1111-1117
92 Jiang SS, Lu YW, Li K, Lin L, Zheng HY, Yan F, Chen JP. Heat shock protein 70 is necessary for Rice stripe virus infection in plants [J]. Mol Plant Pathol, 2014, 15 (9): 907-917
93 Dufresne PJ, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberté JF, Fortin MG. Heat shock 70 protein interaction with Rurnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles [J]. Virology, 2008, 374 (1): 217-227
94 Mathioudakis MM, Veiga R, Ghita M, Tsikou D, Medina V, Canto T, Makris AM, Livieratos IC. Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70 [J]. Virus Res, 2012, 163 (1): 28-39
95 Aparicio F, Thomas CL, Lederer C, Niu Y, Wang D, Maule AJ. Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol [J]. Plant Physiol, 2005, 138 (1): 529-536
96 Chen Z, Zhou T, Wu X, Hong Y, Fan Z, Li H. Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana [J]. Mol Plant Pathol, 2008, 9 (6): 809-817
97 Li J, Xiang CY, Yang J, Chen JP, Zhang HM. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants [J]. Sci Rep, 2015, 5 (14016): doi 10. 1038/srep14016
98 Ghandi A, Adi M, Lilia F, Linoy A, Or R, Mikhail K, Mouhammad Z, Henryk C, Rena G. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures [J]. Sci Rep, 2016, 6: doi 10. 1038/srep19715
99 Fazeli CF, Rezaian MA. Nucleotide sequence and organization of ten open reading frames in the genome of Grapevine leafroll-associated virus 1 and identification of three subgenomic RNAs [J]. J Gen Virol, 2000, 81 (Pt 3): 605-615
100 Pappu H, Karasev AV, Anderson AJ, Pappu S, Hilf ME, Febres V, Eckloff RMG, McCaffery M, Boyko V, Gowda S, Dolja VV, Koonin EV, Gumpf DJ, Cline K, Garnsey SM, Dawson WO, Lee, RF, Niblett CL. Citrus tristeza virus represents a new virus group encoding a HSP70 protein [J]. Virology, 1995, 199: 35-46
101 Wang F, Qi S, Gao Z, Akinyemi IA, Xu D, Zhou B. Complete genome sequence of Tobacco virus 1, a Closterovirus from Nicotiana tabacum [J]. Arch Virol, 2016, 161 (4): 1087-1090
102 Coutts RH, Coffin RS. Beet pseudo-yellows virus is an authentic Closterovirus [J]. Virus Genes, 1996, 13 (2): 179-181
103 Dolja VV, Karasev AV, Koonin EV. Molecular biology and evolution of Closteroviruses: sophisticated build-up of large RNA genomes [J]. Annu Rev Phytopathol, 1994, 32: 261-285
104 Lin JY, Nagy PD. Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of Tombusvirus replication in yeast [J]. J Virol, 2013, 87 (23): 12600-12610
105 Karasev AV, Kashina AS, Gelfand VI, Dolja VV. HSP70-related 65 kDa protein of Beet yellows closterovirus is a microtubule-binding protein [J]. FEBS Lett, 1992, 304 (1): 12-14

更新日期/Last Update: 2018-04-25