|本期目录/Table of Contents|

[1]赵光雷,郑赛,古芸,等.利用豆粕和小麦秸秆生产多肽的固体发酵工艺条件优化[J].应用与环境生物学报,2018,24(01):20-25.[doi:10.19675/j.cnki.1006-687x.2017.03009]
 ZHAO Guanglei,ZHENG Sai,GU Yun,et al.Optimization of solid-state fermentation process conditions for polypeptide production using soybean meal and wheat straw*[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):20-25.[doi:10.19675/j.cnki.1006-687x.2017.03009]
点击复制

利用豆粕和小麦秸秆生产多肽的固体发酵工艺条件优化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年01期
页码:
20-25
栏目:
研究论文
出版日期:
2018-02-09

文章信息/Info

Title:
Optimization of solid-state fermentation process conditions for polypeptide production using soybean meal and wheat straw*
作者:
赵光雷郑赛古芸康文晶黄晓磊余光辉冉炜沈其荣
南京农业大学资源与环境科学学院/江苏省固体有机废弃物资源化利用高技术研究重点实验室 南京 210095
Author(s):
ZHAO Guanglei ZHENG Sai GU Yun KANG Wenjing HUANG Xiaolei YU Guanghui RAN Wei**SHEN Qirong
Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
解淀粉芽孢杆菌XZ-173豆粕秸秆固体发酵多肽
Keywords:
Bacillus amyloliquefaciens XZ-173 soybean meal straw solid-state fermentation polypeptide
分类号:
TQ920.6
DOI:
10.19675/j.cnki.1006-687x.2017.03009
摘要:
以豆粕、小麦秸秆和糖渣为主要原料,以产脂肽细菌解淀粉芽孢杆菌(Bacillus amyloliquefaciens)XZ-173为接种剂进行一系列固体发酵试验. 通过基质筛选和单因素试验研究固体发酵基质组成、装料量、发酵温度、初始pH、发酵时间、含水率和接种量对多肽产量的影响,通过响应面优化法优化氮源和碳源及二者比例. 结果表明:(1)固体发酵产多肽最佳基质组成为豆粕63.03%,小麦秸秆粉33.00%,糖渣1.93%,酵母提取物2.04%,外加无机盐溶液10.18%(V/m);(2)最佳发酵条件为含水率50%(用pH 7.5的去离子水配制),接种量10%(V/m),发酵温度30 ℃,恒温发酵48 h;(3)在最优条件下多肽实际产量为110.06 mg/gds(gds表示每克初始干物质),与预测值109.85 mg/gds吻合(R2 = 0.9742). 本研究在实验室水平上得到的以农产品加工副产品和作物秸秆为主要原料生产多肽的固体发酵优化工艺可为农业废弃物的资源化和多肽的工业化生产奠定基础. (图1 表5 参30)
Abstract:
A series of solid-state fermentation (SSF) experiments were conducted using soybean meal, wheat straw, and sugar residues as the main raw materials, and a lipopeptide-producing bacterium, Bacillus amyloliquefaciens XZ-173, as the inoculum. Substrate screening tests and single-factor experiments were used to study the effect of SSF substrate composition, loading capacity, temperature, initial pH, time, water content, and inoculation amount on the yield of polypeptides. In addition, response surface methodology was used to optimize the fermentation factors, including nitrogen and carbon sources, and their ratios. The results showed that: (1) The optimal substrate comprised 63.03% soybean meal, 33.00% wheat straw, 1.93% sugar residue, 2.04% yeast extract, and 10.18% (V/m) inorganic salt solution; (2) the optimal conditions were 50% moisture content (adjusted with deionized water at pH 7.5), 10% (V/m) XZ-173 inoculum, pH 7.5, and 30 ℃ for 48 h; (3) the actual yield under these optimal substrates and conditions reached 110.06 mg/gds (milligrams per gram of initial dry substrates), which was close to the forecasted yield of 109.85 mg/gds (R2 = 0.9742). Therefore, this study identified the optimal SSF process conditions at the laboratory level for the production of polypeptides using by-products of the agricultural industry and crop straw. However, further studies are needed to develop production at the pilot and plant level.

参考文献/References:

1 李善仁, 陈济琛, 胡开辉, 林新坚. 大豆肽的研究进展[J]. 中国粮油学报, 2009, 24 (7): 142-147 [Li SR, Chen JC, Hu KH, Lin XJ. Advance in studies on soybean peptides [J]. J Chin Cereals Oils Assoc, 2009, 24 (7): 142-147]
2 王凤山, 张天民, 王福清. 我国多肽类药物现状与发展方向[J]. 食品与药品, 2005, 7 (6A): 1-5 [Wang FS, Zhang TM, Wang FQ. Status and development of peptide drugs in China [J]. Food Drug, 2005, 7 (6A): 1-5]
3 张连慧, 贺寅, 刘新旗. 大豆肽制备研究进展及其在食品中的应用[J]. 食品工业科技, 2012, 33 (24): 423-425, 429 [Zhang LH, He Y, Liu XQ. Research advance of preparation of soy peptide and its application in food industry [J]. Sci Technol Food Ind, 2012, 33 (24): 423-425, 429]
4 Farzamirad V, Aluko R. Angiotensin I-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates [J]. Intern J Food Sci Nut, 2008, 59 (5): 428-437
5 Anderson RL. Effects of steaming on soybean proteins and trypsin inhibitors [J]. J Agric Food Chem, 1992, 69 (12): 1170-1176
6 杨玉娟, 姚怡莎, 秦玉昌, 邱静, 李军国, 李俊, 谷旭. 豆粕与发酵豆粕中主要抗营养因子调查分析[J]. 中国农业科学, 2016, 49 (3): 573-580 [Yang YJ, Yao YS, Qin YC, Qiu J, Li JG, Li J, Gu X. Investigation and analysis of main AFN in soybean meal and fermented soybean meal [J]. Sci Agric Sin, 2016, 49 (3): 573-580]
7 余勃, 陆兆新. 发酵豆粕生产多肽的研究[J]. 食品科学, 2007, 28 (2): 189-192 [Yu B, Lu ZX. Study on peptide production by fermentation of soybean meal [J]. Food Sci, 2007, 28 (2): 189-192]
8 Nigam PSN, Pandey A. Solid-state fermentation technology for bioconversion of biomass and agricultural residues [M]//Nigam PS, Pandey A. Biotechnology for Agro-Industrial Residues Utilization. Dordrecht: Springer, 2009: 197-221
9 邓露芳, 范学珊, 王加启. 枯草芽孢杆菌固体发酵豆粕条件的优化[J]. 中国畜牧兽医, 2012, 39 (5): 110-114 [Deng LF, Fan XS, Wang JQ. Fermented soybean meal by bacillus sublitis and its fermentation condition optimized [J]. Chin J Anim Husbandry Vet Med, 2012, 39 (5): 110-114]
10 潘进权, 刘玉婷, 刘夏婷. 毛霉发酵豆粕工艺条件的优化[J]. 食品科学, 2015, 36 (23): 178-182 [Pan JQ, Liu YT, Liu XT. Optimization of the fermentation process of soybean meal by Mucor [J]. Food Sci, 2015, 36 (23): 178-182]
11 毕于运, 高春雨, 王亚静, 李宝玉. 中国秸秆资源数量估算[J]. 农业工程学报, 2009, 25 (12): 211-217 [Bi YY, Gao CY, Wang YJ, Li BY. Estimation of straw resources in China [J]. Trans CSAE, 2009, 25 (12): 211-217]
12 冯伟, 张利群, 庞中伟, 郭淑珍. 中国秸秆废弃焚烧与资源化利用的经济与环境分析[J]. 中国农学通报, 201,7 (6): 350-354 [Feng W, Zhang LQ, Pang ZW, Guo SZ. The economic and environmental analysis of crop residues burning and reutilization in China [J]. Chin Agric Sci Bull, 201,7 (6): 350-354]
13 陈中爱, 曾海英, 董宏伟. 酶法提取糖渣蛋白的工艺研究[J]. 食品科技, 2013, 38 (6): 236-241[Chen ZA, Zeng HY, Dong HW. Extract protein from sugar residue of broken rice with enzyme method [J]. Food Sci Technol, 2013, 38 (6): 236-241]
14 Zhu Z, Zhang FG, Wei Z, Ran W, Shen QR. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation [J]. J Environ Manage, 2013, 127: 96-102
15 肖怀秋, 李玉珍, 林亲录, 杨涛, 邓靖, 龚春平. Box-Behnken响应面优化冷榨花生粕酶解制备花生肽工艺[J]. 中国粮油学报, 2014, 29 (10): 106-111, 117 [Xiao HQ, Li YZ, Lin QL, Yang T, Deng J, Gong CP. Optimization of polypeptide preparation parameters from cold-pressed peanut meal by box-behnken response surface methodology [J]. J Chin Cereals Oils Assoc, 2014, 29 (10): 106-111, 117]
16 王春雨, 迟乃玉, 张庆芳, 窦少华. 产低温脂肪酶菌株CZW001发酵培养基优化研究[J]. 微生物学通报, 2013, 40 (9): 1541-1549 [Wang CY, Chi NY, Zhang QF, Dou SH. Optimization of fermentation medium for low-temperature lipase producing strain CZW001 [J]. Microbiol Chin, 2013, 40 (9): 1541-1549]
17 齐西珍, 王利强, 孟鹏, 白芳, 白钢. 利用响应面法优化α-糖苷酶抑制剂发酵培养基[J]. 微生物学通报, 2012, 39 (2): 203-210 [Qi XZ, Wang LQ, Meng P, Bai F, Bai G. Medium optimization of α-glucosidase inhibitors production by response surface analysis [J]. Microbiol Chin, 2012, 39 (2): 203-210]
18 刘晓艳, 杨国力, 国立东, 孟丹, 连莲, 王文侠. 混菌固态发酵法生产大豆多肽饲料的研究[J]. 饲料工业, 2012, 33 (6): 51-56 [Liu XY, Yang GL, Guo LD, Meng D, Lian L, Wang WX. Research on preparing soybean opypeptide from soybean meal by solid-state fermentation with manifold strains [J]. Feed Ind, 2012, 33 (6): 51-56]
19 David AM, Oscar FVM, Luiz FLL, Marin B. Substrate, air, and thermodynamic parameters for SSF bioreactor models [M]//Mitchell DA, Berovi? M, Krieger N. Solid State Fermentation Bioreactors: Fundamental of Design and Operation. Berlin: Springer, 2006: 265-278
20 Guan JJ, Yang GH, Yin HC. Particle size for improvement of peptide production in mixed-culture solid-state fermentation of soybean meal and the corresponding kinetics [J]. Am J Agric For, 2014, 2 (1): 1-6
21 Zhu Z, Luo Y, Yu GH, Ran W, Shen QR. Enhancement of lipopepitdes production in a two-temperature-stage process under SSF conditions and its bioprocess in the fermenter [J]. Bioresour Technol, 2013, 127: 209-215
22 Chauhan B, Gupta R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14 [J]. Proc Biochem, 2004, 39 (12): 2115-2122
23 王晶晶, 黎张早, 张彦龙, 邓小恳, 黎建才, 阮云泽. 木薯渣、桉树渣固体发酵Bacillus amyloliquefaciens WJ22研制生物有机肥的配方研究[J]. 中国农学通报, 2013, 29 (22): 192-197 [Wang JJ, Li ZZ, Zhang YL, Deng XK, Li JC, Ruan YZ. Solid fermentation ingredient of Bacillus amyloliquefaciens WJ22 to produce bio-organic fertilizer by cassava residue and eucalyptus slag [J]. Chin Agric Sci Bull, 2013, 29 (22): 192-197]
24 柳芳, 田伟, 李凌之, 杨兴明, 沈标, 沈其荣. 生防枯草芽孢杆菌SQR9固体发酵生产生物有机肥的工艺优化[J]. 应用与环境生物学报, 2013, 19 (1): 90-95 [Liu F, Tian W, Li LZ, Yang XM, Shen B, Shen QR. Optimization of solid-state fermentation conditions for antagonistic Bacillus subtilis SQR9 producing bio-organic fertilizer [J]. Chin J Appl Environ Biol, 2013, 19 (1): 90-95]
25 孙巍, 刘学铭. 酶的固体发酵生产研究进展[J]. 生物技术通报, 2008, 24 (2): 64-67 [Sun W, Liu XM. Advances in the production of enzymes by solid-state fermentation [J]. Biotechnol Bull, 2008, 24 (2): 64-67]
26 Wang JL, Liu ZM, Wang Y. Production of a water-soluble fertilizer containing amino acids by solid -state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth [J]. J Biotechnol, 2014, 15 (7): 34-42
27 Rosiane LSL, Liv SS, Ligia RS. Blends of castor meal and castor husks for optimized use as organic fertilizer [J]. Ind Crops Prod, 2011, 33: 364-368
28 汤小朋, 赵华, 汤加勇, 王雪涛, 贾刚, 刘光芒, 陈小玲, 龙定彪. 黑曲霉固态发酵改善木薯渣品质的研究[J]. 动物营养学报, 2014, 26 (7): 2026-2034 [Tang XP, Zhao H, Tang JY, Wang XT, Jia G, Liu GM, Chen XL, Liu DB. Quality improvement of cassava residue by solid-state fermentation with Aspergillus niger [J]. Chin J Anim Nutr, 2014, 26 (7): 2026-2034]
29 兰时乐, 毛小伟, 肖调义, 王红权, 邓元元, 谭斌. 菜籽粕混合菌固体发酵脱毒条件的响应面优化研究[J]. 动物营养学报, 2013, 25 (3): 617-627 [Lan SL, Mao XW, Xiao DY, Wang HQ, Deng YY, Tan B. Detoxification conditions of solid-state fermentation from rapeseed meal by mixture strains using response surface methodology [J]. Chin J Anim Nutr, 2013, 25 (3): 617-627]
30 Suramaythangkoor T, Gheewala SH. Potential alternatives of heat and power technology application using rice straw in Thailand [J]. Appl Energy, 2010, 87 (1): 128-133

更新日期/Last Update: 2018-02-09