|本期目录/Table of Contents|

[1]董晶晶,吴迪,马柯,等.好氧颗粒污泥工艺强化脱氮研究进展[J].应用与环境生物学报,2018,24(01):177-186.[doi:10.19675/j.cnki.1006-687x.2017.02008]
 DONG Jingjing,WU Di,MA Ke,et al.Review on enhanced denitrification of aerobic granular sludge technology[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):177-186.[doi:10.19675/j.cnki.1006-687x.2017.02008]
点击复制

好氧颗粒污泥工艺强化脱氮研究进展 ()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年01期
页码:
177-186
栏目:
综述
出版日期:
2018-02-09

文章信息/Info

Title:
Review on enhanced denitrification of aerobic granular sludge technology
作者:
董晶晶吴迪马柯徐向阳朱亮
1浙江大学环境与资源学院 杭州 310058 2浙江省水体污染控制与环境安全技术重点实验室 杭州 310058
Author(s):
DONG Jingjing WU Di MA Ke XU XiangyangZHU Liang**
1 College of Environmental,Resource Science of Zhejiang University, Hangzhou 310058, China 2 Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
关键词:
好氧颗粒污泥脱氮工艺影响因素强化机制废水生物处理
Keywords:
aerobic granular sludge nitrogen removal process influence factor strengthening mechanism biological treatment of wastewater
分类号:
X703
DOI:
10.19675/j.cnki.1006-687x.2017.02008
摘要:
好氧颗粒污泥是微生物通过自凝聚作用形成的一种特殊的生物聚集体,具有结构致密、沉降性能优异、抗冲击负荷能力强、多功能微生物分区定殖等特点,其在废水强化脱氮除磷与难降解有机物去除方面具有明显的技术优势. 针对目前工业和养殖废水及城镇生活污水等碳氮比低、处理出水总氮达标压力大等突出问题,综述基于好氧颗粒污泥的全自养、同步硝化反硝化、短程硝化反硝化、短程硝化-厌氧氨氧化、异养硝化-好氧反硝化等强化脱氮工艺,介绍其脱氮机制及技术优势,阐明不同好氧颗粒污泥脱氮工艺的特点与颗粒污泥特性,同时总结各种工艺的启动条件及富集相应功能菌的好氧颗粒污泥的形成因素,评估不同工艺应用于实际废水生物处理的可行性. 在此基础上进一步分析进水基质组成(不同碳氮比)、运行模式(连续曝气和间歇曝气)、运行条件(溶解氧浓度、温度和pH)等对好氧颗粒污泥工艺强化脱氮性能与稳定运行的影响. 最后提出应进一步优化好氧颗粒污泥强化脱氮工艺的运行参数,解析好氧颗粒污泥微生物菌群功能,揭示好氧颗粒污泥形成与结构稳定的微生物学机理. (图3 表2 参86)
Abstract:
Aerobic granular sludge (AGS) is a kind of biological aggregate formed by microbial self-immobilization, with advantages of compact structure, excellent setting ability, strong resistance to influent loading rates, and diversity in microbial species. It also has other advantages, such as enhanced removal of nitrogen, phosphorus, and refractory organics. In view of (1) low mass concentration ratio between chemical oxygen demand (COD) and total nitrogen (TN) of industrial and aquaculture wastewater, and urban domestic wastewater and (2) strict standard for TN removal, the present review illustrates several denitrification processes in AGS, including completely autotrophic nitrification, simultaneous nitrification and denitrification, shortcut nitrification-denitrification, partial nitrification-anaerobic ammonia oxidation, and heterotrophic nitrification-aerobic denitrification. The nitrogen removal mechanism and technical advantages of AGS process have been expounded. In addition, the characteristics of denitrification processes based on AGS have also been presented. The start-up conditions of various processes and the formation factors of AGS enriched with corresponding functional bacteria have been summarized, and the feasibility of the application of different processes in biological treatment of wastewater has been evaluated. Furthermore, the influence factors, such as influent composition (different COD/TN ratio), operational mode (continuous aeration and intermittent aeration), and operating conditions (dissolved oxygen concentration, temperature, and pH) on enhanced nitrogen removal and stable operation of AGS process have been discussed, which provides guidance for optimization of nitrogen removal performance of AGS. We have also pointed the trend for further research, such as optimization of the operating parameters of AGS-enhanced nitrogen removal processes, analysis of microbial community function of AGS, microbiological mechanism of AGS formation, and structural stability.

参考文献/References:

1 Nancharaiah YV, Venugopalan VP. Denitrification of synthetic concentrated nitrate wastes by aerobic granular sludge under anoxic conditions [J]. Chemosphere, 2011, 85 (4): 683-688
2 Wiesmann U. Biological nitrogen removal from wastewater [J]. Adv Biochem Eng Biotechnol, 1994, 51 (51): 113-154
3 Chen FY, Liu YQ, Tay JH, Ning P. Rapid formation of nitrifying granules treating high-strength ammonium wastewater in a sequencing batch reactor [J]. Appl Microbiol Biotechnol, 2015, 99 (10): 4445-4452
4 Anthonisen AC, Loehr RC, Prakasam TB, Srinath EG. Inhibition of nitrification by ammonia and nitrous acid [J]. J Water Pollut Contr Fed, 1976, 48 (5): 835-852
5 Glass C, Silverstein JA. Denitrification of high-nitrate, high-salinity wastewater [J]. Water Res, 1999, 33 (1): 223-229
6 Adav SS, Lee DJ, Lai JY. Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source [J]. Appl Microbiol Biotechnol, 2009, 85 (3): 773-778
7 王硕, 于水利, 徐巧, 付强, 李激. 好氧颗粒污泥特性、应用及形成机理研究进展[J]. 应用与环境生物学报, 2014, 20 (4): 732-742 [Wang S, Yu SL, Xu Q, Fu Q, Li J. Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances [J]. Chin J Appl Environ Biol, 2014, 20 (4): 732-742]
8 Adav SS, Lee DJ, Show KY. Aerobic granular sludge: recent advances [J]. Biotechnol Adv, 2008, 26 (5): 411-423
9 Lee DJ, Chen YY, Show KY, Whiteley, CG, Tay, JH. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation [J]. Biotechnol Adv, 2010, 28 (6): 3484-3486
10 Yu L, Tay JH. State of the art of biogranulation technology for wastewater treatment [J]. Biotechnol Adv, 2004, 22 (7): 533-563
11 Tay JH, Yang SF, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 2002, 59 (2-3): 332-337
12 Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N, Hirata A. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor [J]. Water Res, 2004, 37 (20): 4965-4973
13 Wang XH, Diao MH, Yang Y, Shi YJ, Gao MM, Wang SG. Enhanced aerobic nitrifying granulation by static magnetic field [J]. Bioresour Technol, 2012, 110 (4): 105-110
14 Li AJ, Hou BL, Li MX. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones [J]. Bioresour Technol, 2015, 196: 550
15 Mosquera-Corral A, Kreuk MKD, Heijnen JJ, Loosdrecht MCMV. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor [J]. Water Res, 2005, 39 (12): 2676-2686
16 Jang A, Yoon YH, Kim IS, Kim KS, Bishop PL. Characterization and evaluation of aerobic granules in sequencing batch reactor [J]. J Biotechnol, 2003, 105 (1-2): 71-82
17 Wang F, Lu S, Wei YJ, Ji M. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR [J]. J Hazard Mater, 2008, 164 (2-3): 1223-1227
18 Wang J, Wang X, Zhao Z, Li J. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor [J]. Appl Microbiol Biotechnol, 2008, 79 (4): 679-685
19 Bella GD, Torregrossa M. Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration [J]. Bioresour Technol, 2013, 142 (8): 706-713
20 Zhang F, Li P, Chen M, Wu JH, Zhu NW, Wu PX, Chiang PC. Effect of operational modes on nitrogen removal and nitrous oxide emission in the process of simultaneous nitrification and denitrification [J]. Chem Eng J, 2015, 280: 549-557
21 Wan JF, Bessière Y, Spérandio M. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate [J]. Water Res, 2009, 43 (20): 5097-5108
22 de Kreuk MK, van Loosdrecht MC. Selection of slow growing organisms as a means for improving aerobic granular sludge stability [J]. Water Sci Technol, 2004, 49 (11-12): 9-17
23 Aslan S, Miller L, Dahab M. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors [J]. Bioresour Technol, 2008, 100 (2): 659-664
24 Guo J, Peng Y, Wang S, Zheng Y, Huang H, Wang, Z. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure [J]. Bioresour Technol, 2009, 100 (11): 2796-2802
25 Lemaire R, Marcelino M, Yuan Z. Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater [J]. Biotechnol Bioeng, 2008, 100 (6): 1228-1236
26 Shi YJ, Wang XH, Yu HB, Xie HJ, Teng, SX, Sun XF. Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide [J]. Bioresour Technol, 2011, 102 (3): 2536-2541
27 Yan LL, Liu Y, Ren Y, Ying Z. Analysis of the characteristics of short-cut nitrifying granular sludge and pollutant removal processes in a sequencing batch reactor [J]. Bioprocess Biosyst Eng, 2014, 37 (2): 125-132
28 Bartrolí A, Pérez J, Carrera J. Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions [J]. Environ Sci Technol, 2010, 44 (23): 8930-8935
29 Isanta E, Reino C, Carrera J, Pérez, J. Stable partial nitritation for low strength wastewater at low temperature in an aerobic granular reactor [J]. Water Res, 2015, 80: 149-158
30 Dobbeleers T, Daens D, Miele S, D'aes J, Caluwé M, Geuens L, Dries J. Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry [J]. Bioresour Technol, 2016, 226: 211-219
31 Ma B, Peng B, Wei Y, Zhu G, Yuan Z, Peng Y. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen [J]. Sci Rep, 2015, 5: 13048
32 曾涛涛, 李冬, 谢水波, 张杰. 厌氧氨氧化菌微生物特性研究进展[J]. 应用与环境生物学报, 2014, 20 (6): 1111-1116 [Zeng TT, Li D, Xie SB, Zhang J. A review on microbial properties of anaerobic ammonium oxidation (ANAMMOX) bacteria [J] Chin J Appl Environ Biol, 2014, 20 (6): 1111-1116]
33 Ganigué R, Volcke EIP, Puig S, Balaguer MD, Colprim J. Impact of influent characteristics on a partial nitritation SBR treating high nitrogen loaded wastewater [J]. Bioresour Technol, 2012, 111 (1): 62-69
34 王兰. 自养型废水生物脱氮关键技术及机理研究[D]. 杭州: 浙江大学, 2014 [Wang L. Key technologies and mechanisms of autotrophic nitrogen removal from wastewater [D]. Hangzhou: Zhejiang University, 2014]
35 Yin Z, Santos CEDD, Vilaplana JG, Sobotka D, Czerwionka K, Xie L. Importance of the combined effects of dissolved oxygen and pH on optimization of nitrogen removal in anammox-enriched granular sludge [J]. Process Biochem, 2016, 51 (9): 1274-1282
36 Lotti T, Kleerebezem R, Abelleira-Pereira JM, Abbas B, van Loosdrecht MC. Faster through training: the anammox case [J]. Water Res, 2015, 81: 261-268
37 Winkler MKH, Kleerebezem R, Loosdrecht MCMV. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures [J]. Water Res, 2012, 46 (1): 136-144
38 Jenni S, Vlaeminck SE, Morgenroth E, Kai MU. Successful application of nitritation/anammox towastewater with elevated organic carbon to ammonia ratios [J]. Water Res, 2014, 49 (2): 316-326
39 Lotti T, Kleerebezem R, Hu Z, Kartal B, Jetten MS, van Loosdrecht MC. Simultaneous partial nitritation and anammox at low temperature with granular sludge [J]. Water Res, 2014, 66 (1): 111-121
40 Gilbert EM, Agrawal S, Schwartz T, Horn H, Lackner S. Comparing different reactor configurations for partial nitritation/anammox at low temperatures [J]. Water Res, 2015, 81: 92-100
41 Li X, Sun S, Badgley BD, Sung S, Zhang H, He Z. Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor [J]. Water Res, 2016, 94: 23
42 Chen P, Li J, Li QX, Wang Y, Li S. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24 [J]. Bioresour Technol, 2012, 116 (13): 266-270
43 黄菲菲. 异养硝化-好氧反硝化菌的筛选与脱氮性能研究[D]. 南京: 南京理工大学, 2013 [Huang FF. Identification and nitrogen removal characteristic of two heterotrophic nitrification-aerobic denitrification strains [D]. Nanjing: Nanjing University of Science and Technology, 2013]
44 Yao S, Ni J, Chen Q, Borthwick AG. Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature [J]. Bioresour Technol, 2013, 127 (1): 151-157
45 Huang X, Li W, Zhang D, Qin W. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature [J]. Bioresour Technol, 2013, 146 (10): 44-50
46 Yao S, Ni J, Tao M, Li C. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 [J]. Bioresour Technol, 2013, 139 (13): 80-86
47 Ren YX, Yang L, Liang X. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB [J]. Bioresour Technol, 2014, 171: 1-9
48 He T, Li Z, Sun Q, Xu Y, Ye Q. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion [J]. Bioresour Technol, 2016, 200 (1): 493-499
49 Li C, Yang J, Xin W, Wang E, Li B, He R, Yuan H. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24 [J]. Bioresour Technol, 2015, 182: 18-25
50 Zhang J, Wu P, Hao B, Yu Z. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001 [J]. Bioresour Technol, 2011, 102 (21): 9866-989
51 Shoda M, Ishikawa Y. Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4 [J]. J. Biosci Bioeng, 2014, 117 (6): 737-741
52 Sun Z, Lü Y, Liu Y, Ren R. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus, sp. S1 [J]. Bioresour. Technol, 2016, 220: 142-150
53 Chen P, Li J, Li Q X, Wang Y, Li S, Ren T, Wang L. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24 [J]. Bioresour Technol, 2012, 116 (13): 266-270
54 Zhang Q L, Liu Y, Ai G M, Miao LL, Zhen HY, Liu ZP. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7 [J]. Bioresour Technol, 2012, 108 (3): 35-44
55 Yang XP, Wang SM, Zhang DW, Zhou LX. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1 [J]. Bioresour Technol, 2011, 102 (2): 854-862
56 Chen J, Zheng J, Li Y, Hao HH, Chen JM. Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification-aerobic denitrification [J]. Appl Microbiol Biotechnol, 2015, 99 (24): 10695-10702
57 Duan J, Fang H, Su B, Chen J, Lin J. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater [J]. Bioresour Technol, 2014, 179: 421-428
58 Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK . Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater [J]. Int Biodeterior Biodegr, 2013, 78 (3): 67-73
59 Zhao J, Huang J, Guan M, Zhao Y, Chen G, Tian X. Mathematical simulating the process of aerobic granular sludge treating high carbon and nitrogen concentration wastewater [J]. Chem Eng J, 2016, 306: 676-684
60 Zhao Y, Huang J, Zhao H, Yang H. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates [J]. Bioresour Technol, 2013, 143 (1): 439-446
61 Yuan X, Gao D. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor [J]. J Hazard Mater, 2010, 178 (1-3): 1041-1045
62 Yilmaz G, Lemaire R, Keller J, Yuan, Z. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge [J]. Biotechnol Bioeng, 2008, 100 (3): 529-541
63 Beun JJ, Heijnen JJ, Loosdrecht MCMV. N-Removal in a granular sludge sequencing batch airlift reactor [J]. Biotechnol Bioeng, 2001, 75 (1): 82-92
64 Kreuk MKD, Heijnen JJ, Loosdrecht MCMV. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge [J]. Biotechnol Bioeng, 2005, 90 (6): 761-769
65 Wu L, Peng C, Peng Y, Li L, Wang S, Ma Y. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift [J]. Environ Sci, 2012, 24 (2): 234-241
66 Cydzik-Kwiatkowska A, Rusanowska P, Zielińska M, Bernat K. Wojnowskabary?a I. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant [J]. Bioresour Technol, 2014, 154 (2): 162-170
67 Yang SF, Tay JH, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater [J]. J Biotechnol, 2003, 106 (1): 77-86
68 Yang SF, Tay JH, Liu Y. Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules [J]. J Environ Eng, 2005, 131 (1): 1469-1472
69 Kocaturk I, Erguder TH. Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules [J]. Ecol Eng, 2016, 90: 12-24
70 Wei D, Shi L, Yan T, Zhang G, Wang Y, Du B. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor [J]. Bioresour Technol, 2014, 171 (1): 211-216
71 Beun JJ, Heijnen JJ, Loosdrecht MCMV. N-Removal in a granular sludge sequencing batch airlift reactor [J]. Biotechnol Bioeng, 2001, 75 (1): 82-92
72 Wang J, Wang X, Zhao Z, Li J. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor [J]. Appl Microbiol Biotechnol, 2008, 79 (4): 679-685
73 Jang A, Yoon YH, Kim IS, Kim, KS, Bishop PL. Characterization and evaluation of aerobic granules in sequencing batch reactor [J]. J Biotechnol, 2003, 105 (1-2): 71-82
74 Qin L, Liu Y, Tay JH. Denitrification on poly-β-hydroxybutyrate in microbial granular sludge sequencing batch reactor [J]. Water Res, 2005, 39 (8): 1503-1510
75 Adav SS, Lee DJ, Lai JY. Biological nitrification-denitrification with alternating oxic and anoxic operations using aerobic granules [J]. Appl Microbiol Biotechnol, 2009, 84 (6): 1181-1189
76 Wan J, Bessière Y, Spérandio M. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate [J]. Water Res, 2009, 43 (20): 5097-5108
77 Cassidy DP, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Res, 2005, 39 (19): 4817-4823
78 Chen FY, Liu YQ, Tay JH, Ning P. Operational strategies for nitrogen removal in granular sequencing batch reactor [J]. J Hazard Mater, 2011, 189 (1-2): 342-348
79 Wang XH, Jiang LX, Shi YJ, Gao MM, Yang S, Wang, SG. Effects of step-feed on granulation processes and nitrogen removal performances of partial nitrifying granules [J]. Bioresour Technol, 2012, 123 (2): 375-381
80 Zhong C, Wang Y, Wang Y, Lü J, Li Y, Zhu J. High-rate nitrogen removal and its behavior of granular sequence batch reactor under step-feed operational strategy [J]. Bioresour Technol, 2013, 134 (4): 101-106
81 Chen FY, Liu YQ, Tay JH, Ning P. Alternating anoxic/oxic condition combined with step-feeding mode for nitrogen removal in granular sequencing batch reactors (GSBRs) [J]. Sep Purif Technol, 2013, 105 (5): 63-68
82 Henze M. Wastewater treatment: biological and chemical processes [J]. Prog Colloid Polym Sci, 2002, 49 (6): 747-752
83 Frijters CTMJ, Eikelboorn DH, Mulder A, Mulder R. Treatment of municipal wastewater in a CIRCOX? airlift reactor with integrated denitrification [J]. Water Sci Technol, 1997, 36 (1): 173-181
84 Kreuk MKD, Pronk M, Loosdrecht MCMV. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures [J]. Water Res, 2005, 39 (39): 4476-4484
85 Seviour T, Pijuan M, Nicholson T, Keller J, Yuan Z. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges [J]. Water Res, 2009, 43 (18): 4469-4478
86 Lashkarizadeh M, Munz G, Oleszkiewicz JA. Impacts of variable pH on stability and nutrient removal efficiency of aerobic granular sludge [J]. Water Sci Technol, 2016, 73 (1): 60-68

相似文献/References:

[1]李军,** 周延年 何梅 王亚宜 韦苏.城市污水处理厂好氧颗粒污泥的特性*[J].应用与环境生物学报,2008,14(05):640.
[2]陈国科,黄钧,毕京芳,等.好氧颗粒污泥耐受高碳氮负荷过程中的群体感应[J].应用与环境生物学报,2014,20(01):73.[doi:10.3724/SP.J.1145.2014.00073]
 CHEN Guoke,HUANG Jun,BI Jingfang,et al.Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):73.[doi:10.3724/SP.J.1145.2014.00073]
[3]王硕,于水利,徐巧,等.好氧颗粒污泥特性、应用及形成机理研究进展[J].应用与环境生物学报,2014,20(04):732.[doi:10.3724/SP.J.1145.2014.01009]
 WANG Shuo,YU Shuili,XU Qiao,et al.Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):732.[doi:10.3724/SP.J.1145.2014.01009]
[4]关梦龙,黄钧,毕京芳,等.好氧颗粒污泥代谢高浓度有机废水的数学模拟[J].应用与环境生物学报,2014,20(06):1063.[doi:10.3724/SP.J.1145.2014.04005]
 GUAN Menglong,HUANG Jun,BI Jingfang,et al.Mathematical simulation of aerobic granular sludge metabolizing high-concentration organic wastewater[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):1063.[doi:10.3724/SP.J.1145.2014.04005]
[5]冯殿宝 王维红** 王燕杉 苏馈足.以黏土为载体好氧颗粒污泥培养及其对番茄废水处理的研究*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.03033]
 FENG Dianbao,WANG Weihong**,WANG Yanshan & SU Kuizu.Study on aerobic granular sludge is cultured with clay and its treatment of tomato paste processing wastewater*[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):1.[doi:10.19675/j.cnki.1006-687x.2018.03033]

更新日期/Last Update: 2018-02-09