|本期目录/Table of Contents|

[1]张丽娟,李红兵,孙振玫,等.过表达IbOr基因甘薯增强抗盐性的生理机制[J].应用与环境生物学报,2017,23(01):54-59.[doi: 10.3724/SP.J.1145.2016.05005]
 zhang lijuan,Li hongbing**,et al.Physiological mechanism of enhanced salt stress tolerance in sweet potato (Ipomoes batats L.) with overexpression of IbOr gene[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):54-59.[doi: 10.3724/SP.J.1145.2016.05005]
点击复制

过表达IbOr基因甘薯增强抗盐性的生理机制()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年01期
页码:
54-59
栏目:
研究论文
出版日期:
2017-02-25

文章信息/Info

Title:
Physiological mechanism of enhanced salt stress tolerance in sweet potato (Ipomoes batats L.) with overexpression of IbOr gene
作者:
张丽娟李红兵孙振玫王仕稳郭尚洙邓西平
1西北农林科技大学生命科学学院 杨陵 712100 2西北农林科技大学水土保持研究所,黄土高原土壤侵蚀与旱地农业国家重点实验室 杨陵 712100 3西北农林科技大学林学院 杨陵 712100 4韩国生命工学研究院 大田 305-806
Author(s):
zhang lijuan1 2 Li hongbing2** sun zhenmei3 wang shiwen2 Kwak Sangsoo4 & Deng xiping2**
1College of Life Science, Northwest Agriculture and Forestry University, Yangling 712100, China 2State Key Laboratory of Soil Erosion and Dry land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Yangling 712100, China 3Academy of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, China 4Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
关键词:
转基因甘薯盐胁迫净光合速率蒸腾速率类胡萝卜素抗氧化酶
Keywords:
transgenic sweet potato salt stress net photosynthetic rate transpiration rate carotenoids antioxidant enzyme
分类号:
Q78 : S531.01
DOI:
10.3724/SP.J.1145.2016.05005
摘要:
明确转基因甘薯对盐胁迫响应的生理机制,开发种植耐盐性强甘薯对有效利用盐渍化土地和缓解能源危机具有重要的理论与实践意义. 以过表达IbOr基因甘薯及其非转基因甘薯为实验材料,通过室内水培试验,研究150 mmol/L NaCl胁迫不同时期甘薯叶片光合参数和抗氧化酶活性等变化规律. 结果显示,随着盐胁迫时间延长,甘薯叶片中叶绿素、类胡萝卜素含量及叶片净光合速率(Pn)、气孔导度、胞间CO2浓度、蒸腾速率都显著降低,但转基因甘薯降低幅度更小. 盐胁迫3 d后,转基因甘薯叶片中O2—·和MDA含量分别为61.23 ?g/g FW和22.51 ?mol/g FW,而非转基因植株叶片中O2—·和MDA含量分别达到80.56 ?g/g FW和31.92 ?mol,分别是转基因甘薯的1.31和1.42倍,相比于非转基因植株,盐胁迫后转基因甘薯叶片中具有较低水平的O2—·和MDA含量. 甘薯叶片中SOD、POD和CAT的活性在胁迫后都表现出先升高后降低趋势,且转基因甘薯的酶活性显著高于非转基因甘薯. Na+含量在盐胁迫后也显著升高,胁迫9 d后,转基因和非转基因植株叶片中Na+含量分别达到25.44 mg/g DW和35.08 mg/g DW,分别是处理前的11.47倍和14.83倍,并且转基因甘薯Na+含量显著低于非转基因甘薯. 以上结果说明盐胁迫下转基因甘薯具有较低的活性氧含量并且膜脂的损伤较小,保持了相对较高的叶绿素含量且含较高类胡萝卜素含量进而维持相对较强的光合作用;转基因甘薯抗盐性的增强很可能通过提高甘薯抗氧化胁迫的能力来实现. (图5 参29)
Abstract:
Sweet potato is one of the world’s most important food, feed, industrial materials and bioenergy crops. Comprehensive understanding of the physiological mechanism of whether and how transgenic sweet potato overexpressing IbOr genes enhance the tolerance to salt stress and developing a strong salt tolerant sweet potato has important theoretical and practical significance for effective utilization of saline land and alleviation of the energy crisis. Transgenic (TS) and non- transgenic (NS) sweet potato plants were treated with 150 mmol/L NaCl salt stress. The changes of photosynthetic parameters and the activities of antioxidant enzyme were studied at different times after salinity treatment. With salt stress time extended, chlorophyll and carotenoids content, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) all decreased evidently in both TS and NS sweet potato groups, though only slightly in TS lines. After three days of salt stress, the contents of O2—·and MDA in TS were 61.23 ?g/g FW and 22.51 ?mol/g FW, respectively. While, the contents of O2—· and MDA in NS reached 80.56 ?g/g FW and 31.92 ?mol/g FW. Compared with the NS, TS plants had lower level of O2—· and malondialdehyde (MDA) contents. After salinity treatment, the activities of SOD, POD and CAT all firstly increased, and then decreased slightly, with significantly higher enzyme activities in TS lines than in NT plants. After nine days of salt stress, the Na+ contents in TS and NS reached 25.44 mg/g DW and 35.08 mg/g DW, being 11.47 and 14.83 times of that before treatment, respectively. The Na+ content increased evidently in both but significantly higher in NT plants after salt stress. The results indicated that TS plants had lower reactive oxygen species (ROS) level and lipid membrane damage than TS plants. The higher contents of chlorophyll and carotenoids in TS plants may lead to a higher photosynthetic ability than NT plants. Enhancement of salt tolerance in transgenic sweet potato may be achieved mostly by improving antioxidant ability of sweet potato.

参考文献/References:

1 Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review [J]. Ecotoxicol Environ Saf, 2005, 60 (3): 324-349
2 Ashraf M. Some important physiological selection criteria for salt tolerance in plants [J]. Flora, 2004, 199 (5): 361-376
3 Boyer JS. Plant productivity and environment [J]. Science, 1982, 218 (4571): 443-448
4 Zhu JK. Plant salt tolerance [J]. Trends Plant Sci, 2001, 6 (2): 66-71
5 Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53 (53): 247-273
6 Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annu Rev Plant Biol, 2008, 59: 651-681
7 徐玲, 陈自宏, 晏爱芬, 余丽. 植物抗病抗逆机理的研究概述[J]. 江西农业学报, 2012, 24 (3): 90-93 [Xu L, Chen ZH, Yan AF, Yu L. Summarization of resistance mechanism of plant to diseases and adversity [J]. Acta Agric Jiangxi, 2012, 24 (3): 90-93
8 Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses [J]. Plant Physiol Biochem, 2009, 47 (7): 570-577
9 Sun HK, Ahn YO, Ahn MJ, Lee HS,Kwak SS. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato [J]. Phytochemistry, 2012, 74 (74): 69-78
10 Shan L, Joyce VE, Zhou XJ, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation [J]. Plant Cell, 2006, 18 (12): 3594-3605
11 Goo YM, Han EH, Jeong JC, Kwak SS, Yu J, Kim YH, Ahn MJ, Lee SW. Overexpression of the sweet potato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato [J]. Comptes Rendus Biologies, 2015, 338 (1): 12-20
12 Wang Z, Ke QB, Kim MD, Kim SH, Ji CY, Jeong JC, Lee HS, Park WS, Ahn MJ, Li HB, Xu BC, Deng XP, Lee SH, Lim YP, Kwak SS. Transgenic alfalfa plants expressing the sweet potato Orange gene exhibit enhanced abiotic stress tolerance [J]. PLoS ONE, 2015, 10 (5):1-17
13 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 137-202 [Gao JF. Experimental Instruction of Plant Physiology [M]. Beijing: Higher Education Press, 2006: 137-202]
14 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学报, 1990, 26 (6): 55-57 [Wang AG, Luo GH. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants [J]. Chin J Plant Physiol, 1990, 26 (6): 55-57]
15 张荣铣, 许晓明, 戴新宾, 陆巍, 曹树青. 叶绿素b含量低的水稻突变体的光合功能衰退及其与活性氧的关系[J]. 植物生理与分子生物学学报, 2003, 29 (2): 104-108 [Zhang RX, Xu XM, Dai XB, Lu W, Cao SQ. Decline of photosynthetic function and its relation with active oxygen in a rice mutant with low chlorophyll b content [J]. Chin J Plant Physiol Mol Biol, 2003, 29 (2): 104-108
16 赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进[J]. 植物生理学报, 1994, 30 (3): 207-210 [Zhao SJ, Xu CC, Zou Q, Meng QW. Improvements of method for measurement of malondialdehyde in plant tissues [J]. Chin J Plant Physiol, 1994, 30 (3): 207-210]
17 Aebi HE. Methods of enzymatic analysis [J]. J Clin Pathol, 1974, 2 (8): 934
18 Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetize [J]. Plant Mol Biol, 2000, 43 (1): 103-111
19 裘丽珍, 黄有军, 黄坚钦, 夏国华, 龚宁. 不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J]. 浙江大学学报农业与生命科学版, 2006, 32 (4): 420-427 [Qiu LZ, Huang YJ, Huang JQ, Xia GH, Gong N. Comparative study on vegetal and physiological characteristics of different salt-tolerant plants under salt stress [J]. Chin J Zhejiang Univ Agric Life Sci, 2006, 32 (4): 420-427]
20 Yang XH, Chen XY, Ge QY, Li B, Tong YP, Zhang AM, Li ZS, Kuang TY, Lu CM. Tolerance of photosynthesis to photo inhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field condition [J]. Plant Sci, 2006, 171 (3): 389-397
21 Belkhodja R, Morales F, Abadia A, Gomezaparisi J, Abadia J. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.) [J]. Plant Physiol, 1994, 104 (2): 667-673
22 Mittova V, Tal M, Volokita M, Guy M. Salt stress induces up‐regulation of an efficient chloroplast antioxidant system in the salt‐tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species [J]. Physiol Plant, 2002, 115 (3): 393-400
23 Sharma PK, Hall DO. Interaction of salt stress and photo inhibition on photosynthesis in barley and sorghum [J]. J Plant Physiol, 1991, 138 (5): 614-619
24 Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress [J]. Plant Cell Environ, 2002, 25 (7): 873-882
25 Li T, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature [J]. Plant Cell Rep, 2006, 25 (12): 1380-1386
26 Sun SH, Ahn YO, Ahn MJ, Lee HS, Kwak SS. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato [J]. Phytochemistry, 2012, 74 (74): 69-78
27 Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves [J]. J Exp Bot, 2002, 53 (379): 2401-2410
28 许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展[J]. 应用与环境生物学报, 2000, 6 (4): 379-387 [Xu XM, Ye HC, Li GF. Progress in research of plant tolerance to saline stress [J]. Chin J Appl Environ Biol, 2000, 6 (4): 379-387]
29 张东晖. 加拿大披碱草与老芒麦及其种间杂种F1代生物学特性及抗旱耐盐性的研究[D]. 呼和浩特: 内蒙古农业大学, 2008 [Zhang DH, Study on the biological characters and drought and salt resistance of the interspecific hybrid F1 between Elymus canadensis and E. sibiricus [D]. Hohhot: Inner Mongolia Agricultural University, 2008]

相似文献/References:

[1]郭英,刘栋,赵蕾.生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J].应用与环境生物学报,2009,15(01):39.[doi:10.3724/SP.J.1145.2009.00039]
 GUO Ying,LIU Dong,ZHAO Lei.Effect of Extracellular Phytase Produced by Bacillus subtilis T2 on Salt Tolerance of Wheat Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):39.[doi:10.3724/SP.J.1145.2009.00039]
[2]王淑智,李利,张道勇,等.NaCl与Cd对小球藻光系统Ⅱ(PSⅡ)活性的影响[J].应用与环境生物学报,2011,17(06):839.[doi:10.3724/SP.J.1145.2011.00839]
 WANG Shuzhi,LI Li,ZHANG Daoyong,et al.Effects of NaCl and Cd on PhotosystemⅡ (PSⅡ) Activity of Chlorella pyrenoidosa[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):839.[doi:10.3724/SP.J.1145.2011.00839]
[3]魏显珍,王淑智,潘响亮.盐胁迫对喜钙念珠藻生理活性的影响及钙的胁迫缓解效应[J].应用与环境生物学报,2013,19(04):655.[doi:10.3724/SP.J.1145.2013.00655]
 WEI Xianzhen,WANG Shuzhi,PAN Xiangliang.Alleviating Effect of Calcium on Salt-stress-induced Inhibition of Photosynthetic Activities in Nostoc calcicola Breb.[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):655.[doi:10.3724/SP.J.1145.2013.00655]
[4]陈娇,姜玉松,张义正,等.甘薯LEA2基因的克隆与表达分析[J].应用与环境生物学报,2014,20(02):204.[doi:10.3724/SP.J.1145.2014.00204]
 CHEN Jiao,JIANG Yusong,ZHANG Yizheng,et al.Cloning and expression analyses of LEA2 gene from Ipomoea batatas[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):204.[doi:10.3724/SP.J.1145.2014.00204]
[5]彭晓珏,刘瑢,阳菁,等.Gateway技术构建盐和干旱胁迫下水稻根系混合cDNA文库及其质量鉴定[J].应用与环境生物学报,2014,20(02):291.[doi:10.3724/SP.J.1145.2014.00291]
 PENG Xiaojue,LIU Rong,YANG Jing,et al.Construction and identification of a mixed cDNA library of rice roots under salt and drought stress using Gateway technology[J].Chinese Journal of Applied & Environmental Biology,2014,20(01):291.[doi:10.3724/SP.J.1145.2014.00291]
[6]陈飞,王淑智,潘响亮.盐胁迫对蛋白核小球藻光系统I(PSI)和光系统II(PSII)的影响同步监测分析[J].应用与环境生物学报,2015,21(04):695.[doi:10.3724/SP.J.1145.2014.10028]
 CHEN Fei,WANG Shuzhi,PAN Xiangliang.Synchronous analysis of the effects of NaCl stress on photosystems I (PSI) and II (PSII) activities of Chlorella pyrenoidosa[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):695.[doi:10.3724/SP.J.1145.2014.10028]
[7]许天委,张晓楠,刘煜,等.海马齿小热激蛋白SpHSP18.1基因的克隆及盐胁迫表达分析[J].应用与环境生物学报,2015,21(05):882.[doi:10.3724/SP.J.1145.2015.04062]
 XU Tianwei,ZHANG Xiaonan,LIU Yu,et al.Molecular clone of Sesuvium portulacastrum small heat shock protein SpHSP18.1 gene and its expression profiling under salt stress[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):882.[doi:10.3724/SP.J.1145.2015.04062]
[8]陈永富,王阳,冯倩,等.异源表达胡杨PeCPD基因提高烟草对盐、高氮和干旱胁迫的抗性[J].应用与环境生物学报,2017,23(2):225.[doi:10.3724/SP.J.1145.2016.10019]
 CHEN Yongfu,WANG Yang,FENG Qian,et al.Heterologous overexpression of Populus euphratica CPD improved tobacco resistance to salt, high nitrogen, and drought stress[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):225.[doi:10.3724/SP.J.1145.2016.10019]
[9]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
[10]王敏强,吴沛鸿,沈益康,等.盐胁迫下接种丛枝菌根真菌对甜菊生长和氮磷吸收的影响[J].应用与环境生物学报,2018,24(05):960.[doi:10.19675/j.cnki.1006-687x.2017.12038]
 WANG Minqiang,WU Peihong,SHEN Yikang,et al.Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):960.[doi:10.19675/j.cnki.1006-687x.2017.12038]

更新日期/Last Update: 2017-02-25