|本期目录/Table of Contents|

[1]赵 艳 张大龙 李键煚 冯进辉 鲍锦库** 吴洽庆** 朱敦明.青霉素G酰化酶突变体酶催化合成顺式头孢丙烯工艺优化[J].应用与环境生物学报,2016,22(03):363-370.[doi:10.3724/SP.J.1145.2015.10033]
 ZHAO Yan,ZHANG Dalong,LI Jianjiong,et al.Process optimization for enzymatic synthesis of cis-cefprozil by a mutant penicillin G acylase*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):363-370.[doi:10.3724/SP.J.1145.2015.10033]





Process optimization for enzymatic synthesis of cis-cefprozil by a mutant penicillin G acylase*
赵 艳12 张大龙2 李键煚2 冯进辉2 鲍锦库1** 吴洽庆2** 朱敦明2
1四川大学生命科学学院 成都 610064 2中国科学院天津工业生物技术研究所,工业酶国家工程实验室,天津市生物催化技术工程中心 天津 300308
ZHAO Yan12 ZHANG Dalong2 LI Jianjiong2 FENG Jinhui2 BAO Jinku1** WU Qiaqing2** & ZHU Dunming2
1College of Life Sciences, Sichuan University, Chengdu 610064, China 2Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
penicillin G acylase mutants cis-cefprozil immobilization
TQ464 : Q939.9
头孢丙烯作为第二代头孢菌素类抗生素,广泛应用于治疗敏感菌所致的上、下呼吸道感染,皮肤和皮肤软组织感染. 酶法合成头孢丙烯与化学法相比更加绿色环保. 本研究利用来源于大肠杆菌的青霉素G酰化酶(EC野生型WT、突变体βF24A和αF146Y/βF24A合成顺式头孢丙烯(cis-cefprozil). 通过比较不同突变体催化顺式头孢丙烯的合成效率,发现突变体βF24A具有较高合成活性及低水解活性. 以顺式7-氨基-3-丙烯基-4-头孢烷酸(cis-7-APRA)和对羟基苯甘氨酸甲酯(d-HPGME)为底物合成顺式头孢丙烯. 基于水相体系中合成条件优化,最适温度为25 ℃,最适pH为6.0,底物配比Md-HPGME:Mcis-7-APRA = 3:1,酶用量2.6 U/mL,在此最佳条件下转化率可高达99%. 突变体βF24A的固定化酶合成顺式头孢丙烯的转化率为99%,固定化酶连续使用60批次后,活性仍保持52%. 本研究对突变体的筛选和酶催化条件的优化,为酶法合成顺式头孢丙烯奠定了基础. (图7 表3 参40)
Cefprozil is a second generation cephalosporin antibiotics widely used in the treatment of upper and lower respiratory tract infections as well as skin and soft tissue infections caused by sensitive bacteria. Because of the great advantages of biocatalysis over the conventional chemical synthesis by avoiding toxic reagents, solvents and harsh reaction conditions, it is desirable to develop a feasible enzymatic synthesis of cefprozil. In this work, we chose the key sites βF24、αF146 of pecicillin G acylase from Escherichia coli for site-directed mutagenesis. By comparing the synthesis efficiency of WT, βF24A and αF146Y/βF24A, the obtained mutant βF24A which has high synthesis/hydrolysis ratio was used in the enzymatic synthesis of cis-cefprozil from cis-7-APRA and d-HPGME. Based on the aqueous-phase synthesis system, the yield was dependent on the multiple factors. The most suitable temperature and pH was 25 °C and 6.0, respectively, the optimum molar ratio of d-HPGME/cis-7-APRA 3:1 and the enzyme loading 2.6 U/mL. At the optimized conditions, 99% yield was attained with 100 mmol/L of cis-7-APRA. The maximum yield was 99% with immobilized βF24A at the optimized conditions with 100 mmol/L cis-7-APRA. Yields remained 52% after 60 consecutive batch reactions. This paper studies on the selection of mutants and optimization for enzyme catalysis conditions, which provides useful information for enzymatic synthesis of cis-cefprozil.


1 Bhargava S, Lodha R, Kabra SK. Cefprozil: a review [J]. Ind J Pediatrics, 2003, 70 (5): 395-400 2 Liu M, Ma JY, Zhang YN, Wang XL, Zhao HN, Du AH, Yang M, Meng LJ, Deng M, Liu HC. An LC‐MS/MS method for simultaneous determination of cefprozil diastereomers in human plasma and its application for the bioequivalence study of two cefprozil tablets in healthy Chinese volunteers [J]. Biomed Chromatogr, 2016, 30 (3): 288-293 3 Rai BP, Tewari N, Nizar H, Prasad M, Joseph S. Commercial synthesis of cefprozil: development and control of process impurity [J]. Org Process Res Dev, 2014, 18 (5): 662-664 4 肖涛, 张孝清, 曹芳, 田春梅, 王锦堂. 头孢丙烯的合成[J]. 中国医药工业杂志, 2004, 35 (7): 388-390 [Xiao T, Zhang XQ, Cao F, Tian CM, Wang JT. Synthesis of cefprozil [J]. Chin J Pharm, 2004, 35 (7): 388-390] 5 Hao YX. Study on the synthetic process of the cefprozil [J]. Appl Mech Mat, 2014, 686: 17-21 6 Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA. Towards biocatalytic synthesis of β-lactam antibiotics [J]. Adv Syn Catal, 2001, 343 (6-7): 559-576 7 Volpato G, Rodrigues RC, Fernandez-Lafuente R, Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives [J]. Curr Med Chem, 2010, 17 (32): 3855-3873 8 王林, 尹若春, 王金玉, 张烁, 梁瑜, 方林明. 蛋白酶非水相合成反式头孢丙烯[J]. 中国抗生素杂志, 2015, 40 (6): 419-423 [Wang L, Yin RC, Wang JY, Zhang S, Liang Y, Fang LM. The non-aqueous phase synthesis of trans-cefprozil via protease [J]. Chin J Antibiotics, 2015, 40 (6): 419-423] 9 潘月, 李端华, 王佳珉, 王辂, 王欣荣. α-氨基酸酯水解酶突变体催化合成头孢丙烯[J]. 中国抗生素杂志, 2014, 39 (4): 261-266 [Pan Y, Li DH, Wang JM, Wang L, Wang XR. Enzymatic synthesis of cefprozil by mutant of α-amino acid ester hydrolase [J]. Chin J Antibiotics, 2014, 39 (4): 261-266] 10 Ye LJ, Wang L, Pan Y, Cao Y. Changing the specificity of α-amino acid ester hydrolase toward para-hydroxyl cephalosporins synthesis by site-directed saturation mutagenesis [J]. Biotechnol Lett, 2012, 34 (9): 1719-1724 11 Mare?ová H, Pla?ková M, Grulich M, Kyslík P. Current state and perspectives of penicillin G acylase-based biocatalyses [J]. Appl Microbiol Biotechnol, 2014, 98 (7): 2867-2879 12 Chandel AK, Rao LV, Narasu ML, Singh OV. The realm of penicillin G acylase in β-lactam antibiotics [J]. Enzyme Microb Technol, 2008, 42 (3): 199-207 13 Srirangan K, Orr V, Akawi L, Westbrook A, Moo-Young M, Chou CP. Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies [J]. Biotechnol Adv, 2013, 31 (8): 1319-1332 14 Grulich M, ?těpánek V, Kyslík P. Perspectives and industrial potential of PGA selectivity and promiscuity [J]. Biotechnol Adv, 2013, 31 (8): 1458-1472 15 梅婷, 张大龙, 冯进辉, 王敏, 吴洽庆, 朱敦明, 马延和. 自剪切及活性相关位点的组合突变提高头孢菌素C酰化酶水解活力. 应用与环境生物学报, 2015, 21 (3): 427-434 [Mei T, Zhang DL, Feng JH, Wang M, Wu QQ, Zhu DM, Ma YH. Combining sites related to autoproteolytic cleavage and activity to improve the deacylation activity of cephalosporin C acylase [J].Chin J Appl Environ Biol, 2015, 21 (3): 427-434] 16 Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PC. Penicillin acylase has a single-amino-acid catalytic centre [J]. Nature 1995, 373: 264-268 17 McVey CE, Walsh MA, Dodson GG, Wilson KS, Brannigan JA. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism [J]. J Mol Biol, 2001, 313 (1): 139-150 18 Singh V, Goyal Gopal S, Penicillin G Acylase, a biocatalyst and its potential application [J]. Intern J Sci Eng Res, 2014, 5 (5): 153-158 19 Temporini C, Bonomi P, Serra I, Tagliani A, Bavaro T, Ubiali D, Massolini G, Terreni M. Characterization and study of the orientation of immobilized enzymes by tryptic digestion and HPLC-MS: design of an efficient catalyst for the synthesis of cephalosporins [J]. Biomacromolecules, 2010, 11 (6): 1623-1632 20 Alkema WB, Hensgens CM, Kroezinga EH, DeVries E, Floris R, vanderLaan JM, Dijkstra BW, Janssen DB. Characterization of the β-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies [J]. Protein Eng, 2000, 13 (12): 857-863 21 You L, Usher JJ, White BJ, Novotny J. Mutant penicillin G acylases: USA, US6403356B1 [P]. 2002-06-11 22 Jager SA, Shapovalova IV, Jekel PA, Alkema WB, ?vedas VK, Janssen DB. Saturation mutagenesis reveals the importance of residues αR145 and αF146 of penicillin acylase in the synthesis of β-lactam antibiotics [J]. J Biotechnol, 2008, 133 (1): 18-26 23 Alkema WB, Dijkhuis AJ, De Vries E, Janssen DB. The role of hydrophobic active‐site residues in substrate specificity and acyl transfer activity of penicillin acylase [J]. Eur J Biochem, 2002, 269 (8): 2093-2100 24 Alkema WB, Hensgens CM, Snijder HJ, Keizer E, Dijkstra BW, Janssen DB. Structural and kinetic studies on ligand binding in wild-type and active-site mutants of penicillin acylase [J]. Protein Eng Design Selection, 2004, 17 (5): 473-480 25 Cecchini DA, Pavesi R, Sanna S, Daly S, Xaiz R, Pregnolato M, Terreni M. Efficient biocatalyst for large-scale synthesis of cephalosporins, obtained by combining immobilization and site-directed mutagenesis of penicillin acylase [J]. Appl Microbiol Biotechnol, 2012, 95 (6): 1491-1500 26 李端华, 王佳珉, 王辂. 头孢克洛合成酶研究进展[C]//第十二届全国抗生素学术会议论文集, 成都, 2013 27 Aguirre C, Concha I, Vergara J, Riveros R, Illanes A. Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems [J]. Process Biochem, 2010 45 (7): 1163-1167 28 Bahamondes C, Wilson L, Aguirre C, Illanes A. Comparative study of the enzymatic synthesis of cephalexin at high substrate concentration in aqueous and organic media using statistical model [J]. Biotechnol Bioprocess Eng, 2012 17 (4): 711-721 29 Du LL, Wu Q, Chen CX, Liu BK, Lin XF. A two-step, one-pot enzymatic synthesis of ampicillin from penicillin G potassium salt [J]. J Mol Catal B Enzym, 2009, 58 (1): 208-211 30 Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis [J]. Nature, 2012, 485 (7397): 185-194 31 Usher JJ, Romancik G. Synthesis of β-lactam antibacterials using soluble side chain esters and enzymatic acylase: USA, WO 9804732 [P]. 1998-02-05 32 冯胜昔, 梁世中, 龟山丰. 反式头孢丙烯的酶法合成及其体外抗菌活性[J]. 中国抗生素杂志, 2007, 32 (1): 22-24 [Feng SX, Liang SZ, Yutaka K. Enzymatic synthesis and in vitro antibacterial activity of trans-cefprozil [J]. Chin J Antibiotics, 2007, 32 (1): 22-24] 33 Feng SX, Liang SZ, Lou WY. Two-step, one-pot enzymatic synthesis of cefprozil from-phenylacetamido-3-propenyl-cephalosporanic acid (GPRA) [J]. Biocatal Biotransform, 2008, 26 (4): 321-326 34 Ribeiro MP, Ferreira AL, Giordano RL, Giordano RC. Selectivity of the enzymatic synthesis of ampicillin by E. coli PGA in the presence of high concentrations of substrates [J]. J Mol Catal B Enzym, 2005, 33 (3): 81-86 35 Illanes A, Wilson L, Corrotea O, Tavernini L, Zamorano F, Aguirre C. Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium [J]. J Mol Catal B Enzym, 2007, 47 (1): 72-78 36 史瑞明, 王峰, 杨玉萍, 抗生素废水处理现状与研究进展[J]. 山东化工, 2007, 36 (11): 10-14 [Shi RM, Wang F, Yang YP. The present situation and research progress in the treament of antibiotic waste water [J]. Shangdong Chem Ind, 2007, 36 (11): 10-14] 37 Guerra P, Kim M, Shah A, Alaee M, Smyth S. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes [J]. Sci Tot Environ, 2014, 473: 235-243 38 Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques [J]. Enzyme Microb Technol, 2007, 40 (6): 1451-1463 39 Kallenberg AI, van Rantwijk F, Sheldon RA. Immobilization of penicillin G acylase: the key to optimum performance [J]. Adv Synth Catal, 2005, 347 (7-8): 905-926 40 Pe?i? M, López C, ?lvaro G, López-Santín J. A novel immobilized chloroperoxidase biocatalyst with improved stability for the oxidation of amino alcohols to amino aldehydes [J]. J Mol Catal B Enzym, 2012, 84: 144-151


 TANG Meiqiong,SHEN Peihong,XU Jing,et al.Cloning of the putA gene from Sinorhizobium fredii HN01[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):697.[doi:10.3724/SP.J.1145.2010.00697]
 LIU Miaomiao,FENG Juan,LIU Hongbo,et al.Xylenol-orange-assay-of-hydrogen-peroxide for Measuring Uricase Activity and Recognizing High-activity Uricase Mutant[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):523.[doi:10.3724/SP.J.1145.2013.00523]

更新日期/Last Update: 2016-06-25